• Title/Summary/Keyword: ferroelectric material

Search Result 472, Processing Time 0.024 seconds

A Study of the Ferroelectric Properties of PbZr0.4Ti0.6O3 (PZT) Grains Using Kelvin Force Microscopy Analysis

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.275-278
    • /
    • 2010
  • We have examined the Ferroelectric properties of $PbZr_{0.4}Ti_{0.6}O_3$ (PZT) grains by monitoring the surface potential through the utilization of Kelvin force microscopy. Hysteretic and time dependent behaviors of small and large grains were compared with each other. The smaller grain yields had smaller values of surface potential. However, the normalized voltage versus surface potential behavior indicates that the smaller grains became saturated earlier with respect to the writing voltages than did the larger grains. On the other hand, the surface potential hysteresis loop obtained from the smaller grains showed a similar shape to what might be obtained from a Zr rich PZT film. In contrast the hysteresis loop of the larger grain looks like that obtained from a Ti-rich film. In addition, the time dependent behaviors of the smaller grains also revealed a better response than the response of larger grains. The overall ferroelectric properties of the smaller grains seem better than corresponding properties for larger grains. The Ti/Zr ratio of the PZT film which was examined in this study was 60/40.

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF

Ferroelectric Properties of SBT Capacitor with Annealing Times

  • Cho, Choon-Nam;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.66-70
    • /
    • 2004
  • The Sr$\_$0.7/Bi$\_$2.3/Ta$_2$O$\_$9/(SBT)thin films are deposited on Pt-coated electrode (Pt/TiO$_2$/SiO$_2$/Si) using a RE magnetron sputtering method. The ferroelectric properties of SBT capacitors with annealing times were studied. As a result of conducting the X-ray diffraction analysis and the electron microscopy analysis, the perovskite phase began to grow from 10 minutes after annealing the specimen, and excellent crystallization was accomplished at 60 minutes after annealing the specimen. The remanet polarization (2P$\_$r/) value and the coercive electric field (E$\_$c/) of the SBT thin film specimen showed the most excellent characteristics at 60 minutes after annealing the specimen, which were approximately 12.40 C/$\textrm{cm}^2$ and 30 kV/cm, respectively. The leakage current density of the SBT thin film specimen as annealed for 60 minutes was approximately 2.81${\times}$10$\^$-9/A/$\textrm{cm}^2$.

Fabrication and Properties of MFSFET′s Using $BaMgF_4$/Si Structures for Non-volatile Memory ($BaMgF_4$/Si 구조를 이용한 비휘발성 메모리용 MFSFET의 제작 및 특성)

  • 이상우;김광호
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1029-1033
    • /
    • 1997
  • A prototype MFSFET using ferroelectric fluoride BaMgF$_4$as a gate insulator has been successfully fabricated with the help of 2 sheets of metal mask. The fluoride film was deposited in an ultrai-high vacuum system at a substrate temperature of below 30$0^{\circ}C$ and an in-situ post-deposition annealing was conducted for 20 seconds at $650^{\circ}C$ in the same chamber. The interface state density of the BaMgF$_4$/Si(100) interface calculated by a MFS capacitor fabricated on the same wafer was about 8$\times$10$^{10}$ /cm$^2$.eV. The I$_{D}$-V$_{G}$ characteristics of the MFSFET show a hysteresis loop due to the ferroelectric nature of the BaMgF$_4$film. It is also demonstrated that the I$_{D}$ can be controlled by the “write” plus which was applied before the measurements even at the same “read”gate voltage.ltage.

  • PDF

Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode ($Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성)

  • Seo, Min-Su;Hong, Ki-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

Effects of SrTiO3-Modification on the Dielectric and Electromechanical Strain Properties of Lead-Free Bi1/2Na1/2TiO3-BiAlO3 Piezoceramics (Bi1/2Na1/2TiO3-BiAlO3 무연 압전 세라믹스의 유전 및 전기 기계적 변형 특성에 대한 SrTiO3 첨가 효과)

  • Lee, Sang Sub;Lee, Chang-Heon;Duong, Trang An;Kim, Dong Hyeok;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.562-568
    • /
    • 2021
  • (Bi1/2Na1/2)TiO3 (BNT)-based ceramics are considered promising candidates for actuator application owing to their excellent electromechanical strain properties However, to obtain large strain properties, there remain several issues such as thermal stability and high operating fields. Therefore, this study investigates a reduction of operating field in (0.98-x)Bi1/2Na1/2TiO3-0.02 BiAlO3-xSrTiO3 (BNT-2BA-100xST, x = 0.20, 0.21, 0.22, 0.23, and 0.24) via analyses of the microstructure, crystal structure, dielectric, polarization, ferroelectric and electromechanical strain properties. The average grain size of BNT-${\underline{2}}$BA-100xST ceramics decreases with increasing ST content. Results of polarization and electromechanical strain properties indicate that a ferroelectric to relaxor state transition is induced by ST modification. As a consequence, a large electromechanical strain of 592 pm/V is obtained at a relatively low electric field of 4 kV/mm in 22 mol% ST-modified BNT-2BA ceramics. We believe that the materials synthesized in this study are promising candidates for actuator applications.

Crystallographic orientation modulation of ferroelectric $Bi_{3.15}La_{0.85}Ti_3O_{12}$ thin films prepared by sol-gel method (Sol-gel법에 의해 제조된 강유전체 $Bi_{3.15}La_{0.85}Ti_3O_{12}$ 박막의 결정 배향성 조절)

  • Lee, Nam-Yeal;Yoon, Sung-Min;Lee, Won-Jae;Shin, Woong-Chul;Ryu, Sang-Ouk;You, In-Kyu;Cho, Seong-Mok;Kim, Kwi-Dong;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.851-856
    • /
    • 2003
  • We have investigated the material and electrical properties of $Bi_{4-x}La_xTi_3O_{12}$ (BLT) ferroelectric thin film for ferroelectric nonvolatile memory applications of capacitor type and single transistor type. The 120nm thick BLT films were deposited on $Pt/Ti/SiO_2/Si$ and $SiO_2/Nitride/SiO_2$ (ONO) substrates by the sol-gel spin coating method and were annealed at $700^{\circ}C$. It was observed that the crystallographic orientation of BLT thin films were strongly affected by the excess Bi content and the intermediate rapid thermal annealing (RTA) treatment conditions regardeless of two type substrates. However, the surface microstructure and roughness of BLT films showed dependence of two different type substrates with orientation of (111) plane and amorphous phase. As increase excess Bi content, the crystallographic orientation of the BLT films varied drastically in BLT films and exhibited well-crystallized phase. Also, the conversion of crystallographic orientation at intermediate RTA temperature of above $450^{\circ}C$ started to be observed in BLT thin films with above excess 6.5% Bi content and the rms roughness of films is decreased. We found that the electrical properties of BLT films such as the P-V hysteresis loop and leakage current were effectively modulated by the crystallographic orientations change of thin films.

  • PDF

Reduce of Etching Damage of PZT Thin Films in $Cl_2/CF_4$ Plasma with addition of Ar and $O_2$ ($Cl_2/CF_4$ 플라즈마 Ar, $O_2$ 첨가에 따른 PZT 막막의 식각 손상 효과)

  • Kang, Myoung-Gu;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.21-25
    • /
    • 2001
  • In this study, recovery of plasma etching· damage in PZT thin film with additive gas and re-annealing after etching have been investigated. The PZT thin films were etched as a function of $Cl_2/CF_4$ with addition of Ar and $O_2$ with inductively induced plasma. The etch rates of PZT thin films were 1450 $\AA$/min at 30% additive Ar into $(Cl_2(80%)+CF_4 (20%))$ and 1100 $\AA$/min at 10% additive $O_2$ into $C(Cl_2(80%)+CF_4(20%))$. In order to recovery properties of PZT thin films after etching, the etched PZT thin films were re-annealed at various temperatures in at $O_2$ atmosphere. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ re-annealing process. The improvement of ferroelectric behavior at annealed sample is consistent with the increase of the (100) and (200) PZT peaks revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensity of Pb-O, Zr-O and Ti-O peak are increased and the chemical residue peak is reduced by $O_2$ re-annealing. The ferroelectric behavior consistent with the dielectric nature of $Ti_xO_y$ is recovered by $O_2$ recombination during rapid thermal annealing process.

  • PDF

Effects of Sodium Excess on Ferroelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics (Bi0.5(Na0.78K0.22)0.5TiO3 세라믹스의 강유전 특성에 미치는 나트륨 과잉 효과)

  • Park, Jung-Soo;Kim, Seong-Won;Jeong, Young-Hun;Yun, Ji-Sun;Paik, Jong-Hoo;Lee, Sung-Gap;Cho, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.764-768
    • /
    • 2016
  • To investigate excess $Na^+$ effect, $Bi_{0.5}(Na_{0.78+x}K_{0.22})_{0.5}TiO_3$ ($0{\leq}x{\leq}0.05$) (BNKT) ceramics were prepared by using a conventional solid-state reaction method. The structure and ferroelectric properties of BNKT ceramics were characterized by XRD (X-ray diffraction) and polarization dependence by external electric field. Also, the temperature dependence of dielectric constant and loss were studied. From these results, it was found that appropriate excess $Na^+$ into BNKT ceramics compensate the volatility and induce dense ceramics. The enhanced piezoelectric coefficient (158 pC/N) and depolarization temperature ($202^{\circ}C$) were obtained for the x=0.01 composition.

Reduce of Etching Damage of PZT Thiin Films in $Cl_{2}/CF_{4}$ Plasma with addition of Ar and $O_2$ ($Cl_{2}/CF_{4}$ 플라즈마에 Ar,$O_2$첨가에 따른 PZT 박막의 식각 손상 효과)

  • 강명구;김경태;김창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.21-25
    • /
    • 2001
  • In this study, recovery of plasma etching damage in PZT thin film with additive gas and re-annealing after etching have been investigated. The PZT thin films were etched as a function of Cl$_2$/CF$_4$ with addition of Ar and $O_2$ with inductively induced plasma. The etch rates of PZT thin films were 1450$\AA$/min at 30% additive Ar into (Cl$_2$(80%)+CF$_4$ (20%)) and 1100$\AA$/min at 10% additive $O_2$ into C(Cl$_2$(80%)+CF$_4$ (20%)). In order to recovery properties of PZT thin films after etching, the etched PZT thin films were re-annealed at various temperatures in at $O_2$ atmosphere. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ re-annealing process. The improvement of ferroelectric behavior at annealed sample is consistent with the increase of the (100) and (200) PZT peaks revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensity of Pb-O, Zr-O and Ti-O peak are increased and the chemical residue peak is reduced by $O_2$ re-annealing. The ferroelectric behavior consistent with the dielectric nature of Ti$_{x}$O$_{y}$ is recovered by $O_2$ recombination during rapid thermal annealing process.s.s.

  • PDF