DOI QR코드

DOI QR Code

Effects of Sodium Excess on Ferroelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics

Bi0.5(Na0.78K0.22)0.5TiO3 세라믹스의 강유전 특성에 미치는 나트륨 과잉 효과

  • Park, Jung-Soo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Seong-Won (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Gap (Department of Materials Science and Engineering, Gyeong-Sang National University) ;
  • Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 박정수 (한국세라믹기술원 전자소재부품센터) ;
  • 김성원 (한국세라믹기술원 전자소재부품센터) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 이성갑 (경상대학교 재료공학과) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터)
  • Received : 2016.08.13
  • Accepted : 2016.11.07
  • Published : 2016.12.01

Abstract

To investigate excess $Na^+$ effect, $Bi_{0.5}(Na_{0.78+x}K_{0.22})_{0.5}TiO_3$ ($0{\leq}x{\leq}0.05$) (BNKT) ceramics were prepared by using a conventional solid-state reaction method. The structure and ferroelectric properties of BNKT ceramics were characterized by XRD (X-ray diffraction) and polarization dependence by external electric field. Also, the temperature dependence of dielectric constant and loss were studied. From these results, it was found that appropriate excess $Na^+$ into BNKT ceramics compensate the volatility and induce dense ceramics. The enhanced piezoelectric coefficient (158 pC/N) and depolarization temperature ($202^{\circ}C$) were obtained for the x=0.01 composition.

Keywords

References

  1. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997).
  2. T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 111 (2007). [DOI: https:/doi.org/10.1007/s10832-007-9095-5]
  3. J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. P. K. Panda, J. Mater. Sci., 44, 5049 (2009). [DOI: https:/doi.org/10.1007/s10853-009-3643-0]
  5. C. Zhou, X. Liu, and W. Li, J. Mater. Sci. Eng. B, 153, 31 (2008). [DOI: https:/doi.org/10.1016/j.mseb.2008.09.032]
  6. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991). [DOI: https:/doi.org/10.1143/JJAP.30.2236]
  7. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., 38 5564 (1999). [DOI: https:/doi.org/10.1143/JJAP.38.5564]
  8. K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006). [DOI: https:/doi.org/10.1143/JJAP.45.4493]
  9. M. Naderer, D Schutz, T. Kainz, K. Reichmann, and F. Mittermayr, J. Eur. Ceram. Soc., 32, 2299 (2012). [DOI: https:/doi.org/10.1016/j.jeurceramsoc.2012.02.031]
  10. Z. Yang, B. Liu, L. Wei, and Y. Hou, Mater. Res. Bull., 43, 81 (2008). [DOI: https:/doi.org/10.1016/j.materresbull.2007.02.016]
  11. C. J. Jeon, W. J. Yeo, and E. S. Kim, J. Ceram. Soc. Japan., 118, 1079 (2010). [DOI: https:/doi.org/10.2109/jcersj2.118.1079]
  12. Q. Xu, D. P. Huang, M. Chen, W. Chen, H. X. Liu, and B. H. Kim, J. Alloys Compd., 471, 310 (2009). [DOI: https:/doi.org/10.1016/j.jallcom.2008.03.078]
  13. J. S. Park, C. J. Jeon, Y. H. Jeong, J. S. Yun, and J. H. Cho, Mater. Lett., 167, 218 (2016). [DOI: https:/doi.org/10.1016/j.matlet.2016.01.011]
  14. F. Ni, L. Luo, X. Pan, W. Li, and J. Zhu, J. Alloys Compd., 541, 150 (2012). [DOI: https:/doi.org/10.1016/j.jallcom.2012.06.129]