DOI QR코드

DOI QR Code

Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories

이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터

  • Cho, Boeun (Department of Chemical Engineering, Soongsil University) ;
  • Kang, Moon Sung (Department of Chemical Engineering, Soongsil University)
  • 조보은 (숭실대학교 화학공학과) ;
  • 강문성 (숭실대학교 화학공학과)
  • Received : 2016.10.04
  • Accepted : 2016.10.17
  • Published : 2016.12.01

Abstract

We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.

Keywords

References

  1. H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications (1st ed.) (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
  2. K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater., 20, 224 (2010). [DOI: https:/doi.org/10.1002/adfm.200901677]
  3. W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dotz, and S. Mhaisalkar, J. Mater. Chem., 25, 8971 (2011). [DOI: https:/doi.org/10.1039/c1jm10966a]
  4. R.C.G. Naber, B. D. Boer, P.W.M. Blom, and D.M.D. Leeuw, Appl. Phys. Lett., 87, 203509 (2005). [DOI: https:/doi.org/10.1063/1.2132062]
  5. M. S. Kang, J. H. Cho, and S. H. Kim, Ch. 8 Electrolyte-Gating Organic Thin Film Transistors (1st ed.) (VCH Verlag GmbH & Co. KGaA, Weinheim, 2015) p. 253.
  6. J. C. Scott and L. D. Bozano, Adv. Mater., 19, 1452 (2007). [DOI: https:/doi.org/10.1002/adma.200602564]
  7. S. K. Hwang, T. J. Park, K. L. Kim, S. M. Cho, B. J. Jeong, and C. Park, ACS Appl. Mater. Interface, 6, 20179 (2014). [DOI: https:/doi.org/10.1021/am505750v]
  8. H. Bong, W. H. Lee, D. Y. Lee, B. J. Kim, J. H. Cho, and K. Cho, Appl. Phys. Lett., 96, 192115 (2010). [DOI: https:/doi.org/10.1063/1.3428357]
  9. J. S. Lee, Electron. Mater. Letter., 7, 175 (2011). [DOI: https:/doi.org/10.1007/s13391-011-0901-5]
  10. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, Adv. Mater., 18, 3179 (2006). [DOI: https:/doi.org/10.1002/adma.200601434]
  11. Y. H. Chou, H. C. Chang, C. L. Liu, and W. C. Chen, Poly. Chem., 6, 341 (2015). [DOI: https:/doi.org/10.1039/C4PY01213E]
  12. Y. Guo, C. A. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, and Y. Liu, Adv. Mater., 21, 1954 (2009). [DOI: https:/doi.org/10.1002/adma.200802430]
  13. J. Lee, S. Lee, M. H. Lee, and M. S. Kang, Appl. Phys. Lett., 106, 063302 (2015). [DOI: https:/doi.org/10.1063/1.4908187]
  14. B. Cho, S. H. Yu, M. H. Lee, J. Lee, J. Y. Lee, J. H. Cho, and M. S. Kang, Org. Electron., 15, 3439 (2014). [DOI: https:/doi.org/10.1016/j.orgel.2014.09.034]
  15. N. M. Murani, Y. J. Hwang, F. S. Kim, and S. A. Jenekhe, Org. Electron., 31, 104 (2016). [DOI: https:/doi.org/10.1016/j.orgel.2016.01.015]