• Title/Summary/Keyword: feedback gain

Search Result 806, Processing Time 0.028 seconds

A Low Noise Low Power Capacitive Instrument Amplifier for Bio-Potential Detection (생체 신호 측정용 저 잡음 저 전력 용량성 계측 증폭기)

  • Park, Chang-Bum;Jung, Jun-Mo;Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.342-347
    • /
    • 2017
  • We present a precision instrument amplifier (IA) designed for bio-potential acquisition. The proposed IA employs a capacitively coupled instrument amplifier (CCIA) structure to achieve a rail-to-rail input common-mode range and low gain error. A positive feedback loop is applied to boost the input impedance. Also, DC servo loop (DSL) with pseudo resistors is adopted to suppress electrode offset for bio-potential sensing. The proposed amplifier was designed in a $0.18{\mu}m$ CMOS technology with 1.8V supply voltage. Simulation results show the integrated noise of $1.276{\mu}Vrms$ in a frequency range from 0.01 Hz to 1 KHz, 65dB SNR, 118dB CMRR, and $58M{\Omega}$ input impedance respectively. The total current of IA is $38{\mu}A$. It occupies $740{\mu}m$ by $1300{\mu}m$ including the passive on-chip low pass filter.

An Application of LTR Method in a DUOX System to Control a MDOF Structure Subjected to the Seismic Excitations (루프전달회복법(Loop Transfer Recovery: LTR)을 이용한 다자유도 DUOX 시스템의 지진동 제어)

  • Lee, Jin-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.65-73
    • /
    • 2008
  • Retaining large stability margin is essential in designing a feedback control system to deal with the uncertainties inherently existing in the mathematical model and the control apparatus. The LQG controller in general loses the stability margin due to the embed Kalman filter. The performance of a control system called LTR with a DUOX structure(LTR/DOUX) to overcome the demerit of LQG controller is to be investigated from the responses in both the time and the frequency domain. The results indicated that the LTR/DOUX recovered the gain margin of 30dB approximately 20 times more than that of LQG/DOUX, resulting in a robust stable control system.

An Active filter Design using Normalized High Order Inverse Chebyshev Functions (정규화된 고차 inverse Chebyshev함수를 이용한 능동 필터 설계)

  • 신홍규;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.322-331
    • /
    • 1988
  • In this thesis, an active RC filter using high order inverse chebyshev function is designed and the design method for cascading blocks with low sensitivity and maximum dynamic range is discussed. To have maximum dynamic range, we have proposed the simple algorithm with a pole-zero pairing, the cascading sequence by flatness matrix and optimum gain distribution for a given transfer function. And 2nd order Block is designed with negative feedback to improve the sensitivity problem which had a defect at active RC circuits. Using the suggested method, we have designed the active RC low pass filter of the normalized 7th order inverse chebyshev function, as a results, we have shown that this accord with the given specification.

  • PDF

Stable adaptive observer for state Identification in control system (안정한 적응관측기법에 의한 제어계의 상태추정)

  • Bang, S.Y.;Chun, S.Y.;Yim, W.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.898-901
    • /
    • 1988
  • Up to now, using adaptive control method, Identification deals with system whose entire state variables and prameters are accessible for measurement. In practical situations, all the state variables cannot be measured and it is impossible to directly apply since the parameters of the system are unknown. Therefore, in this paper, using only input-output data, such a model of the system is not available since the parameters of the system are unknown. this leads to the concept of an adptive observer in which both the parameters and the state variable of the system are identified simultaniously. Lyapunov's direct method and Kalman-Yakubovich (K-Y) lemma are employed to ensure the stability of this schemes. The feature is that the signal and adaptive gain which is generated from filter is imposed upon feedback vector and then state variables and the unknown parameters can be identified. To show the usefulness of the proposed schemes, computer simulation result of unknown second-order system shows the effectiveness of the proposed schems.

  • PDF

On The performance of Coordinated Random Beamforming Schemes in A Two-Cell Symmetric Interference Channel (두 셀 대칭적 간섭 채널환경에서 협력적 불규칙 빔형성 방법의 성능에 대한 연구)

  • Yang, Jang-Hoon;Chae, Hyun-Jin;Kim, Yo-Han;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.318-324
    • /
    • 2011
  • In this paper, three coordinated random beamforming (CRBF) schemes are analyzed in a two-cell symmetric interference channel. A simple partial coordination of RBF with base station selection (BSS) is shown to achieve the same average sum rate performance of CRBF with joint encoding (JE). To improve the sum rate performance further, we also propose a transmission mode selection (TMS) between the BSS and JE which is shown to have additional sum rate gain for the large number of users. Simulation results verify the eectiveness of the proposed CRBF schemes and accuracy of the proposed analysis.

Construction and Characterization of Travelling Wave Type Single Mode Fiber Laser Using a Fiber Grating (광섬유격자를 이용하는 진행파형 단일모드 광섬유레이저의 제작과 특성 측성)

  • 김택중;박희갑;이동한
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.296-301
    • /
    • 1995
  • A single-mode erbium-doped fiber laser is constructed by using a intracore fiber Bragg grating and a unidirectional fiber loop mirror. The laser cavity is designed in such a way that the laser beam forms a travelling wave in the gain medium by placing the erbium-doped fiber inside the unidirectional loop and that the wavelength-selective feedback is made from the outside of the loop by a fiber grating with 0.2 nm reflection linewidth. An additional fiber ring resonator is constructed and used as an optical spectrum analyzer to observe the variation of the laser mode spectra. As the result, relatively stable single mode, single polarization output is observed for the most of the time except some mode hoppings in minute scale due to enviommental temperature variations. tions.

  • PDF

A 2 GHz 20 dBm IIP3 Low-Power CMOS LNA with Modified DS Linearization Technique

  • Rastegar, Habib;Lim, Jae-Hwan;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The linearization technique for low noise amplifier (LNA) has been implemented in standard $0.18-{\mu}m$ BiCMOS process. The MOS-BJT derivative superposition (MBDS) technique exploits a parallel LC tank in the emitter of bipolar transistor to reduce the second-order non-linear coefficient ($g_{m2}$) which limits the enhancement of linearity performance. Two feedback capacitances are used in parallel with the base-collector and gate-drain capacitances to adjust the phase of third-order non-linear coefficients of bipolar and MOS transistors to improve the linearity characteristics. The MBDS technique is also employed cascode configuration to further reduce the second-order nonlinear coefficient. The proposed LNA exhibits gain of 9.3 dB and noise figure (NF) of 2.3 dB at 2 GHz. The excellent IIP3 of 20 dBm and low-power power consumption of 5.14 mW at the power supply of 1 V are achieved. The input return loss ($S_{11}$) and output return loss ($S_{22}$) are kept below - 10 dB and -15 dB, respectively. The reverse isolation ($S_{12}$) is better than -50 dB.

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.

Analysis of Current Control Stability using PI Control in Synchronous Reference Frame for Grid-Connected Inverter with LCL Filter (LCL 필터를 사용하는 계통연계형 인버터의 동기좌표계 PI 전류제어 안정도 해석)

  • Jo, Jongmin;Lee, Taejin;Yun, Donghyun;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.168-174
    • /
    • 2016
  • In this paper, current control using PI controller in the synchronous reference frame is analyzed through the relationship among bandwidth, resonance frequency, and sampling frequency in the grid-connected inverter with LCL filter. Stability is investigated by using bode plot in frequency domain and root locus in discrete domain. The feedback variable is the grid current, which is regulated by the PI controller in the synchronous reference frame. System delay is modeled as 1.5Ts, which contains computational and PWM modulator delay. Two resonance frequencies are given at 815 Hz and 3.16 kHz from LCL filter parameters. Sufficient phase and gain margins can be obtained to guarantee stable current control, in case that resonance frequency is above one-sixth of the sampling frequency. Unstable current control is performed when resonance frequency is below one-sixth of the sampling frequency. Analysis results of stability from frequency response and discrete response is the same regardless of resonance frequency. Finally, stability of current control based on theoretical analysis is clearly verified through simulation and experiment in grid-connected inverters with LCL filter.

On the user equipment (UE) side time tracker design and implementation of the WCDMA system (WCDMA 시스템의 단말기측 time tracker 설계 및 구현)

  • Yeh, Choong-Il;Chang, Kyung-Hi;Kim, Hwan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.96-101
    • /
    • 2003
  • This paper is on the user equipment (UE) side time tracker design and implementation of the wideband code division multiple access (WCDMA) system. The time tracker is constructed as a second order closed loop including time error detector (TED), loop filter (LP), numerically controlled oscillator (NCO), and sample selector (SS). Through the simulation, we found the gain of the TED as a function of the CPICH power contribution to the total transmission power of the base station. Also we derived the transfer function of the loop and the BER versus DPCH power relationships where timing offsets and loop noise bandwidths are used as parameters. In the curve, we can conclude that there are appropriate loop noise bandwidths according to the given environments for the better performance.