• 제목/요약/키워드: feature transformation

검색결과 392건 처리시간 0.023초

부가 주성분분석을 이용한 미지의 환경에서의 화자식별 (Speaker Identification Using Augmented PCA in Unknown Environments)

  • 유하진
    • 대한음성학회지:말소리
    • /
    • 제54호
    • /
    • pp.73-83
    • /
    • 2005
  • The goal of our research is to build a text-independent speaker identification system that can be used in any condition without any additional adaptation process. The performance of speaker recognition systems can be severely degraded in some unknown mismatched microphone and noise conditions. In this paper, we show that PCA(principal component analysis) can improve the performance in the situation. We also propose an augmented PCA process, which augments class discriminative information to the original feature vectors before PCA transformation and selects the best direction for each pair of highly confusable speakers. The proposed method reduced the relative recognition error by 21%.

  • PDF

수평.수직 에지 검출과 변형된 특징 매칭을 이용한 번호판 인식 (Recognition of a Car License plate Using Horizontal and Vertical Edge and Transformation Feature Matching)

  • 이종은;정기봉;오무송
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.342-345
    • /
    • 2002
  • 차량 번호판 인식에 대한 여러 가지 방법들이 제시되고 있다. 기존 연구들의 문제점은 번호판 영역의 밝기 변화 둥에 영향을 많이 받았으며 그로 인하여 번호판 영역 추출률에 영향을 미치는 것은 물론 문자 인식에서도 많은 문제점들이 존재하였다. 따라서 본 연구에서는 색상 정보를 이용하여 밝기를 보정한 후 마스크 적용을 통한 수평ㆍ수직 에지 검출과 형태학적 정보를 이용하여 번호판을 추출하고 변형된 특징 매칭을 이용하여 문자를 인식함으로써 인식률을 향상시킬 수 있었다.

  • PDF

Electromagnetic Properties of the Dirac Particles

  • Pac, P.Y.
    • Nuclear Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.103-106
    • /
    • 1969
  • gauge독립한 새로운 unitary변환을 도입함으로서 진동하고 있는 전장안에서의 spin 1/2 가전입자의 운동을 기술하는데 적합한 Dirac 방정식의 표시가 도출되고 있다. 이 새로운 표시에 있어서 potentials를 포함하지 않은 유효 Hamiltonian은 그 비상대론적 근거에서 새로운 특성을 나타내는 사실을 보여주고 있다.

  • PDF

형상유사도 기반의 면 객체 매칭을 통한 갱신 객체 탐지 (Automatic Detection of the Updating Object by Areal Feature Matching Based on Shape Similarity)

  • 김지영;유기윤
    • 한국측량학회지
    • /
    • 제30권1호
    • /
    • pp.59-65
    • /
    • 2012
  • 본 연구에서는 축척과 갱신 주기가 상이한 공간 데이터 셋에서 기하정보를 이용한 형상유사도 기반 면 객체 매칭을 통하여 갱신 객체를 탐지하는 방법을 제안하였다. 이를 위하여, 먼저 축척이 상이한 공간 데이터 셋의 매칭 관계를 분석하여 갱신 객체를 정의하였다. 다음으로 시멘틱 매칭을 통하여 추출된 기준점을 이용한 아핀변환을 수행하여 축척이 상이한 데이터간의 계통오차를 제거하고, 중첩 분석을 통하여 다수 면 객체를 단일 객체화 하였다. 각각의 단일 객체를 대상으로 형상유사도 기반의 면 객체 매칭을 적용하여 갱신 객체를 탐지하게 된다. 제안된 갱신 객체 탐지 방법을 우리나라의 수치지도 2.0과 도로명주소 전자지도에 적용한 결과 F-측정값이 0.958로 나타났으며, 시각적 평가에서 유의미한 갱신 객체가 탐지되는 것을 알 수 있었다.

웨이브릿 계수의 퍼지 동질성과 고주파 에너지를 이용한 영상 검색용 특징벡터 추출 (Visual Feature Extraction for Image Retrieval using Wavelet Coefficient’s Fuzzy Homogeneity and High Frequency Energy)

  • 박원배;류은주;송영준
    • 한국콘텐츠학회논문지
    • /
    • 제4권1호
    • /
    • pp.18-23
    • /
    • 2004
  • 본 논문에서는 공간주파수 특성과 다중 해상도 특성을 모두 갖는 웨이브릿 변환을 이용하여 각 대역의 특성에 맞는 비주얼 특징을 추출하고 이를 내용기반 영상 검색에 이용하는 새로운 방법을 제시하였다. 웨이브릿 변환된 영상의 최저주파 대역은 원 영상의 근사한 형태로 공간 정보를 충분히 활용할 수 있다. 이를 위해 웨이브릿 계수값과 각 계수간의 공간 정보를 모두 고려한 퍼지 동질성(FH : Fuzzy Homogeneity)를 이용하여 L개의 특징 벡터를 추출하였고, 나머지 고주파 대역의 에너지 값을 이용하여 3개의 특징 벡터를 추출하여 이를 영상 데이터베이스에 저장한다. 질의 시에는 L개의 FH 벡터 중 가장 크기가 큰 10개의 값과 3개의 고주파 대역의 에너지 값을 이용하여 가장 유사한 영상을 검색하였다. 90개의 텍스쳐 영상을 사용해 실험한 결과 좋은 정확성을 보였다.

  • PDF

Feature Extraction of Simulated fault Signals in Stator Windings of a High Voltage Motor and Classification of Faulty Signals

  • Park, Jae-Jun;Jang, In-Bum
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.965-975
    • /
    • 2005
  • In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.

스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식 (Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP)

  • 한수환
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.34-42
    • /
    • 1997
  • 본 논문은 산업분야의 군사적으로 많이 사용되고 있는 planar shape의 인식을 스펙트럼 분석기를 이용하여 FFT 스펙트럼으로부터 추출된 3차원 특징 벡터와 신경회로망인 fuzzy ARTMAP을 이용하여 시도되었다. 외곽선 정보를 추출하여 이를 원점으로 이동시키고 각 경계점들과 원점들과의 유클리드 거리를 구하여 이를 다시 FFT스펙트럼과 스펙트럼 분석기를 통하여 3차원 특징 벡터를 추출하였다. 이 3차원 데이터는 이동, 회전, 크기에 무관한 값으로 fuzzy ARTMAP에 입력값으로 사용하였다. Fuzzy ARTMAP은 두개의 fuzzy ART 모듈을 가지고 있으며 위에서 구한 특징 벡터들에 의해 학습되고 실험되어 진다.본 논문에 포함된 실험은 4개의 비행기와 4개의 산업부품을 이용하여 잡음이 섞인 shape의 인식에 있엇 제시된 방법이 좋은 인식률을 기록함을 보여주고 있다.

  • PDF

초분광 영상 융합을 이용한 종양인식 (Hyperspectral Image Fusion for Tumor Detection)

  • 허성철;김인택
    • 전자공학회논문지SC
    • /
    • 제43권4호
    • /
    • pp.11-20
    • /
    • 2006
  • 본 논문에서는 초분광 형광영상과 반사영상 융합을 이용한 닭의 종양인식방법을 제안하였다. 형광영상에 밴드비율을 적용하여 피부의 정상과 종양부분을 구분한다. 이를 위해 각각 부분의 확률밀도함수의 중첩된 면적을 최소화하는 방법을 사용하였다. 이 방법으로 획득한 4개의 특정영상에 분할-합병법을 적용하여 형광영상 분류결과를 얻었다. 반사영상 분석에서는 단일 밴드가 정보량에 주는 영향에 근거하여 밴드 선택 방법을 제안하였다. 학습데이터에 의해 투영 축을 선택하는 선형변환을 정의함으로써 영상분류에 효과적인 많은 특징을 확보하였다. 이에 따라 반사영상에서도 세밀한 영상의 해석이 가능하였고 특징 선택의 자동화를 실현하였다. 반사영상에서 획득한 특정영상도 분할-합병법으로 분류하였으며 형광영상의 분류결과와 융합하여 종양을 인식하였다. 모의실험을 통해 제안한 방법은 기존의 방법에 비해 오인식이 낮음을 확인하였다.

젖소의 개체인식 및 형상 정보화를 위한 컴퓨터 시각 시스템 개발(II) - 스테레오 영상을 이용한 체위 분석 - (Development of Computer Vision System for Individual Recognition and Feature Information of Cow (II) - Analysis of body parameters using stereo image -)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • 제28권1호
    • /
    • pp.65-76
    • /
    • 2003
  • The analysis of cow body parameters is important to provide some useful information fur cow management and cow evaluation. Present methods give many stresses to cows because they are invasive and constrain cow postures during measurement of body parameters. This study was conducted to develop the stereo vision system fur non-invasive analysis of cow body features. Body feature parameters of 16 heads at two farms(A, B) were measured using scales and nineteen stereo images of them with walking postures were captured under outdoor illumination. In this study, the camera calibration and inverse perspective transformation technique was established fer the stereo vision system. Two calibration results were presented for farm A and fm B, respectively because setup distances from camera to cow were 510 cm at farm A and 630cm at farm B. Calibration error values fer the stereo vision system were within 2 cm for farm A and less than 4.9 cm for farm B. Eleven feature points of cow body were extracted on stereo images interactively and five assistant points were determined by computer program. 3D world coordinates for these 15 points were calculated by computer program and also used for calculation of cow body parameters such as withers height. pelvic arch height. body length. slope body length. chest depth and chest width. Measured errors for body parameters were less than 10% for most cows. For a few cow. measured errors for slope body length and chest width were more than 10% due to searching errors fer their feature points at inside-body positions. Equation for chest girth estimated by chest depth and chest width was presented. Maximum of estimated error fur chest girth was within 10% of real values and mean value of estimated error was 8.2cm. The analysis of cow body parameters using stereo vision system were successful although body shape on the binocular stereo image was distorted due to cow movements.

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]