The goal of our research is to build a text-independent speaker identification system that can be used in any condition without any additional adaptation process. The performance of speaker recognition systems can be severely degraded in some unknown mismatched microphone and noise conditions. In this paper, we show that PCA(principal component analysis) can improve the performance in the situation. We also propose an augmented PCA process, which augments class discriminative information to the original feature vectors before PCA transformation and selects the best direction for each pair of highly confusable speakers. The proposed method reduced the relative recognition error by 21%.
차량 번호판 인식에 대한 여러 가지 방법들이 제시되고 있다. 기존 연구들의 문제점은 번호판 영역의 밝기 변화 둥에 영향을 많이 받았으며 그로 인하여 번호판 영역 추출률에 영향을 미치는 것은 물론 문자 인식에서도 많은 문제점들이 존재하였다. 따라서 본 연구에서는 색상 정보를 이용하여 밝기를 보정한 후 마스크 적용을 통한 수평ㆍ수직 에지 검출과 형태학적 정보를 이용하여 번호판을 추출하고 변형된 특징 매칭을 이용하여 문자를 인식함으로써 인식률을 향상시킬 수 있었다.
gauge독립한 새로운 unitary변환을 도입함으로서 진동하고 있는 전장안에서의 spin 1/2 가전입자의 운동을 기술하는데 적합한 Dirac 방정식의 표시가 도출되고 있다. 이 새로운 표시에 있어서 potentials를 포함하지 않은 유효 Hamiltonian은 그 비상대론적 근거에서 새로운 특성을 나타내는 사실을 보여주고 있다.
본 연구에서는 축척과 갱신 주기가 상이한 공간 데이터 셋에서 기하정보를 이용한 형상유사도 기반 면 객체 매칭을 통하여 갱신 객체를 탐지하는 방법을 제안하였다. 이를 위하여, 먼저 축척이 상이한 공간 데이터 셋의 매칭 관계를 분석하여 갱신 객체를 정의하였다. 다음으로 시멘틱 매칭을 통하여 추출된 기준점을 이용한 아핀변환을 수행하여 축척이 상이한 데이터간의 계통오차를 제거하고, 중첩 분석을 통하여 다수 면 객체를 단일 객체화 하였다. 각각의 단일 객체를 대상으로 형상유사도 기반의 면 객체 매칭을 적용하여 갱신 객체를 탐지하게 된다. 제안된 갱신 객체 탐지 방법을 우리나라의 수치지도 2.0과 도로명주소 전자지도에 적용한 결과 F-측정값이 0.958로 나타났으며, 시각적 평가에서 유의미한 갱신 객체가 탐지되는 것을 알 수 있었다.
본 논문에서는 공간주파수 특성과 다중 해상도 특성을 모두 갖는 웨이브릿 변환을 이용하여 각 대역의 특성에 맞는 비주얼 특징을 추출하고 이를 내용기반 영상 검색에 이용하는 새로운 방법을 제시하였다. 웨이브릿 변환된 영상의 최저주파 대역은 원 영상의 근사한 형태로 공간 정보를 충분히 활용할 수 있다. 이를 위해 웨이브릿 계수값과 각 계수간의 공간 정보를 모두 고려한 퍼지 동질성(FH : Fuzzy Homogeneity)를 이용하여 L개의 특징 벡터를 추출하였고, 나머지 고주파 대역의 에너지 값을 이용하여 3개의 특징 벡터를 추출하여 이를 영상 데이터베이스에 저장한다. 질의 시에는 L개의 FH 벡터 중 가장 크기가 큰 10개의 값과 3개의 고주파 대역의 에너지 값을 이용하여 가장 유사한 영상을 검색하였다. 90개의 텍스쳐 영상을 사용해 실험한 결과 좋은 정확성을 보였다.
In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.
본 논문은 산업분야의 군사적으로 많이 사용되고 있는 planar shape의 인식을 스펙트럼 분석기를 이용하여 FFT 스펙트럼으로부터 추출된 3차원 특징 벡터와 신경회로망인 fuzzy ARTMAP을 이용하여 시도되었다. 외곽선 정보를 추출하여 이를 원점으로 이동시키고 각 경계점들과 원점들과의 유클리드 거리를 구하여 이를 다시 FFT스펙트럼과 스펙트럼 분석기를 통하여 3차원 특징 벡터를 추출하였다. 이 3차원 데이터는 이동, 회전, 크기에 무관한 값으로 fuzzy ARTMAP에 입력값으로 사용하였다. Fuzzy ARTMAP은 두개의 fuzzy ART 모듈을 가지고 있으며 위에서 구한 특징 벡터들에 의해 학습되고 실험되어 진다.본 논문에 포함된 실험은 4개의 비행기와 4개의 산업부품을 이용하여 잡음이 섞인 shape의 인식에 있엇 제시된 방법이 좋은 인식률을 기록함을 보여주고 있다.
본 논문에서는 초분광 형광영상과 반사영상 융합을 이용한 닭의 종양인식방법을 제안하였다. 형광영상에 밴드비율을 적용하여 피부의 정상과 종양부분을 구분한다. 이를 위해 각각 부분의 확률밀도함수의 중첩된 면적을 최소화하는 방법을 사용하였다. 이 방법으로 획득한 4개의 특정영상에 분할-합병법을 적용하여 형광영상 분류결과를 얻었다. 반사영상 분석에서는 단일 밴드가 정보량에 주는 영향에 근거하여 밴드 선택 방법을 제안하였다. 학습데이터에 의해 투영 축을 선택하는 선형변환을 정의함으로써 영상분류에 효과적인 많은 특징을 확보하였다. 이에 따라 반사영상에서도 세밀한 영상의 해석이 가능하였고 특징 선택의 자동화를 실현하였다. 반사영상에서 획득한 특정영상도 분할-합병법으로 분류하였으며 형광영상의 분류결과와 융합하여 종양을 인식하였다. 모의실험을 통해 제안한 방법은 기존의 방법에 비해 오인식이 낮음을 확인하였다.
The analysis of cow body parameters is important to provide some useful information fur cow management and cow evaluation. Present methods give many stresses to cows because they are invasive and constrain cow postures during measurement of body parameters. This study was conducted to develop the stereo vision system fur non-invasive analysis of cow body features. Body feature parameters of 16 heads at two farms(A, B) were measured using scales and nineteen stereo images of them with walking postures were captured under outdoor illumination. In this study, the camera calibration and inverse perspective transformation technique was established fer the stereo vision system. Two calibration results were presented for farm A and fm B, respectively because setup distances from camera to cow were 510 cm at farm A and 630cm at farm B. Calibration error values fer the stereo vision system were within 2 cm for farm A and less than 4.9 cm for farm B. Eleven feature points of cow body were extracted on stereo images interactively and five assistant points were determined by computer program. 3D world coordinates for these 15 points were calculated by computer program and also used for calculation of cow body parameters such as withers height. pelvic arch height. body length. slope body length. chest depth and chest width. Measured errors for body parameters were less than 10% for most cows. For a few cow. measured errors for slope body length and chest width were more than 10% due to searching errors fer their feature points at inside-body positions. Equation for chest girth estimated by chest depth and chest width was presented. Maximum of estimated error fur chest girth was within 10% of real values and mean value of estimated error was 8.2cm. The analysis of cow body parameters using stereo vision system were successful although body shape on the binocular stereo image was distorted due to cow movements.
International Journal of Computer Science & Network Security
/
제23권12호
/
pp.101-106
/
2023
Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.