The Journal of the Korea Contents Association (한국콘텐츠학회논문지)
- Volume 4 Issue 1
- /
- Pages.18-23
- /
- 2004
- /
- 1598-4877(pISSN)
- /
- 2508-6723(eISSN)
Visual Feature Extraction for Image Retrieval using Wavelet Coefficient’s Fuzzy Homogeneity and High Frequency Energy
웨이브릿 계수의 퍼지 동질성과 고주파 에너지를 이용한 영상 검색용 특징벡터 추출
Abstract
In this paper, we propose a new visual feature extraction method for content-based image retrieval(CBIR) based on wavelet transform which has both spatial-frequency characteristic and multi-resolution characteristic. We extract visual features for each frequency band in wavelet transformation and use them to CBIR. The lowest frequency band involves spacial information of original image. We extract L feature vectors using fuzzy homogeneity in the wavelet domain, which consider both the wavelet coefficients and the spacial information of each coefficient. Also, we extract 3 feature vectors wing the energy values of high frequency bands, and store those to image database. As a query, we retrieve the most similar image from image database according to the 10 largest homograms(normalized fuzzy homogeneity vectors) and 3 energy values. Simulation results show that the proposed method has good accuracy in image retrieval using 90 texture images.
본 논문에서는 공간주파수 특성과 다중 해상도 특성을 모두 갖는 웨이브릿 변환을 이용하여 각 대역의 특성에 맞는 비주얼 특징을 추출하고 이를 내용기반 영상 검색에 이용하는 새로운 방법을 제시하였다. 웨이브릿 변환된 영상의 최저주파 대역은 원 영상의 근사한 형태로 공간 정보를 충분히 활용할 수 있다. 이를 위해 웨이브릿 계수값과 각 계수간의 공간 정보를 모두 고려한 퍼지 동질성(FH : Fuzzy Homogeneity)를 이용하여 L개의 특징 벡터를 추출하였고, 나머지 고주파 대역의 에너지 값을 이용하여 3개의 특징 벡터를 추출하여 이를 영상 데이터베이스에 저장한다. 질의 시에는 L개의 FH 벡터 중 가장 크기가 큰 10개의 값과 3개의 고주파 대역의 에너지 값을 이용하여 가장 유사한 영상을 검색하였다. 90개의 텍스쳐 영상을 사용해 실험한 결과 좋은 정확성을 보였다.