Visual Feature Extraction for Image Retrieval using Wavelet Coefficient’s Fuzzy Homogeneity and High Frequency Energy

웨이브릿 계수의 퍼지 동질성과 고주파 에너지를 이용한 영상 검색용 특징벡터 추출

  • 박원배 (충북대학교 정보통신공학과) ;
  • 류은주 (충북대학교 정보통신공학과) ;
  • 송영준 (충북대학교 정보통신공학과)
  • Published : 2004.03.01

Abstract

In this paper, we propose a new visual feature extraction method for content-based image retrieval(CBIR) based on wavelet transform which has both spatial-frequency characteristic and multi-resolution characteristic. We extract visual features for each frequency band in wavelet transformation and use them to CBIR. The lowest frequency band involves spacial information of original image. We extract L feature vectors using fuzzy homogeneity in the wavelet domain, which consider both the wavelet coefficients and the spacial information of each coefficient. Also, we extract 3 feature vectors wing the energy values of high frequency bands, and store those to image database. As a query, we retrieve the most similar image from image database according to the 10 largest homograms(normalized fuzzy homogeneity vectors) and 3 energy values. Simulation results show that the proposed method has good accuracy in image retrieval using 90 texture images.

본 논문에서는 공간주파수 특성과 다중 해상도 특성을 모두 갖는 웨이브릿 변환을 이용하여 각 대역의 특성에 맞는 비주얼 특징을 추출하고 이를 내용기반 영상 검색에 이용하는 새로운 방법을 제시하였다. 웨이브릿 변환된 영상의 최저주파 대역은 원 영상의 근사한 형태로 공간 정보를 충분히 활용할 수 있다. 이를 위해 웨이브릿 계수값과 각 계수간의 공간 정보를 모두 고려한 퍼지 동질성(FH : Fuzzy Homogeneity)를 이용하여 L개의 특징 벡터를 추출하였고, 나머지 고주파 대역의 에너지 값을 이용하여 3개의 특징 벡터를 추출하여 이를 영상 데이터베이스에 저장한다. 질의 시에는 L개의 FH 벡터 중 가장 크기가 큰 10개의 값과 3개의 고주파 대역의 에너지 값을 이용하여 가장 유사한 영상을 검색하였다. 90개의 텍스쳐 영상을 사용해 실험한 결과 좋은 정확성을 보였다.

Keywords