In machining a part in CAD/CAM system, it is required that the drawing information should be automatically generated, modified, deleted, and thus be used as an general information throughout the entire manufacturing process. This research addresses basic entities(point, line, circle, arc) for design feature and combination of this features, based on GT concepts, with minimum user's manual input. This paper deals with the generalization of operating system which can cover the s parts which appears in mechanical part handbook and the basic constitutional part of sold base. The system developed shows a strong application impact on automatic process planning system of medium - size injection sold companies.
In this paper, we propose the dynamic scene segmentation algorithm using a cross mask and edge information. This method, a combination of the conventioanl feature-based and pixel-based approaches, uses edges as features and determines moving pixels, with a cross mask centered on each edge pixel, by computing similarity measure between two consecutive image frames. With simple calcualtion the proposed method works well for image consisting of complex background or several moving objects. Also this method works satisfactorily in case of rotaitional motion.
This study presents a new customer segmentation method based on features that can predict the customer's buying behavior. In this method, we consider all variables that can affect the customer's buying behavior including demographics, psychographics, technographics, transaction pattern-related variables, etc. We define several features which are the combination of variables with the interaction effect by using C5.0, use SOM (Self-Organizing Map) neural networks in odor to extract the feature's patterns and classify, and then make features' rules using C5.0 far the prediction of customer buying behavior
Signal is composed of the independent components that can describe itself. These components can distinguish itself from any other signals and be extracted by analysis itself. This algorithm is called Independent Component Analysis (ICA) and image signal is considered as linear combination of independent components and features that is the weighted vector of independent component. This algorithm is already used in order to extract the good feature for image classification and very effective In this paper, we'll explain the method of stereo matching using independent component analysis and show the experimental result.
Kim, Jae Hyup;Kim, Hun Ki;Jang, Kyung Hyun;Lee, Jong Min;Moon, Young Shik
한국컴퓨터정보학회논문지
/
제21권5호
/
pp.79-89
/
2016
In this paper, we proposed the object classification method using genetic and dynamic random forest consisting of optimal combination of unit tree. The random forest can ensure good generalization performance in combination of large amount of trees by assigning the randomization to the training samples and feature selection, etc. allocated to the decision tree as an ensemble classification model which combines with the unit decision tree based on the bagging. However, the random forest is composed of unit trees randomly, so it can show the excellent classification performance only when the sufficient amounts of trees are combined. There is no quantitative measurement method for the number of trees, and there is no choice but to repeat random tree structure continuously. The proposed algorithm is composed of random forest with a combination of optimal tree while maintaining the generalization performance of random forest. To achieve this, the problem of improving the classification performance was assigned to the optimization problem which found the optimal tree combination. For this end, the genetic algorithm methodology was applied. As a result of experiment, we had found out that the proposed algorithm could improve about 3~5% of classification performance in specific cases like common database and self infrared database compare with the existing random forest. In addition, we had shown that the optimal tree combination was decided at 55~60% level from the maximum trees.
현대사회는 다원화 사회로서 늑종 영역 또는 어느 분야마다 그 경계가 사라지면서 복잡한 상황 속에 살고 있다. 이러한 복잡한 상황을 폭넓게 이해하고 수용하기 위해서는 개방된 텍스트 구조로서의 상호텍스트적인 환경예술과 수용자와의 상호작용을 이해해야 할 것이다. 상호텍스트적인 특성으로 바라 본 환경예술을 장르와 장르간의 혼합, 이질적 공간과 시간간의 혼합된 요소에 수용자의 체험으로 인한 상호작용을 살펴보았다. 이는 수용자가 예술작품을 완성하는 과정에 참여함으로써 개인적인 경험 또는 상황을 의미하는 개념으로 환상성과 탈 장소성, 장소의 특수성과 시공간의 표현방법을 상호텍스트성의 특성으로 설정하였다. 이러한 체험요소의 특성들을 각 작품의 특징을 분석하는 방법론으로 사용하였다. 환상성의 특성은 이벤트적 상황과 우연성 개입으로 사건이 발생하는 장소를 전개시키며, 탈 장소성은 비 물질적 감각성으로 수용자의 공각각적 체험을 유도하는 전략을 사용하였다. 장소의 맥락을 중요시 한 장소의 특수성, 시공 연속체적 변화를 반영하고 프로세스 위주의 특징으로 시공간 표현방법을 제안하였다. 결과적으로 환경예술은 시각적으로 현존성에 의지하는 형이상학적 장식의 차원을 넘어서 수용자의 복잡한 존재양태에 깊숙이 자리잡고 거기에서부터 삶의 양분을 부단히 공급하는 인식의 전환이 되써야 할 것이다. 그렇다면 환경예술도 일종의 텍스트의 차원에서 다른 모든 텍스트들과 어울어지면서 텍스트적 삶을 살게 될 것이고 창조성은 유일성 대신에 상호텍스트성 사이에서 실천적 창조성으로 다시 태어난다 하겠다. 이러한 타 영역간의 전목, 또 이것을 바라보고 체험하는 수용자들의 다양한 측면을 허용하는 다원적 측면과 끊임없이 새롭게 만들어지는 생성의 개념을 가지는 진행 중인 작품 즉 열린 작품을 만들어내야 할 것이다.
The engineering design process is a creative process, and the designers must repeatedly apply Undo/Redo operations to modify CAD models to explore new solutions. Undo/Redo has become one of most important functions in interactive graphics and CAD systems. Undo/Redo in a collaborative CAD system is also very helpful for collaborative awareness among a group of cooperative designers to eliminate misunderstanding and to recover from design error. However, Undo/Redo in a collaborative CAD system is much more complicated. This is because a single erroneous operation is propagated to other remote sites, and operations are interleaved at different sites. This paper presents a multi-user selective Undo/Redo approach in full distributed collaborative CAD systems. We use site ID and State Vectors to locate the Undo/Redo target at each site. By analyzing the composition of the complex CAD model, a tree-like structure called Feature Combination Hierarchy is presented to describe the decomposition of a CAD model. Based on this structure, the dependency relationship among features is clarified. B-Rep re-evaluation is simplified with the assistance of the Feature Combination Hierarchy. It can be proven that the proposed Undo/Redo approach satisfies the intention preservation and consistency maintenance correctness criteria for collaborative systems.
본 논문에서는 칼라 특징과 다해상도 질감 특징의 효율적인 결합에 근거한 내용기반 영상검색 기법을 제안한다. 칼라 특징으로는 칼라의 공간적인 상관관계를 잘 나타내는 HSV 칼라 오토코렐로그램(color autocorrelogram)을 선택하였고, 질감 특징으로는 국부 밝기 변화와 국부 질감의 부드러움 정도를 잘 측정하는 BDIP와 BVLC를 선택하였다. 이 질감 특징들은 칼라 영상의 휘도(luminance) 성분에서 웨이브렛(wavelet) 분해되어 다해상도로 추출되었다. 그리고 이들 칼라와 질감 특징들은 효율적인 유사도 측정을 위해 각각 이들의 차원들과 표준편차 벡터들에 의해 정규화된 후 결합되었다. 실험을 위한 영상으로는 Corel DB와 VisTex DB, 그리고 이들로부터 파생되어 다양한 해상도의 영상으로 구성된 Corel_MR DB와 VisTex_MR DB를 사용하였다. 실 험 결과, 제안한 방법은 Precision vs. Recall 평가에서 기존의 BDIPBVLC 방법과 칼라 오토코렐로그램 방법보다 각각 평균 $8\%$와 평균 $11\%$ 향상된 성능을 나타내었으며 웨이브렛. 모멘트, CSD, 히스토그램을 이용한 방법들보다 $10\%$ 이상의 높은 성능을 나타내었다. 특히, 제안한 방법이 다른 방법들 보다 다해상도로 구성된 영상 DB에서 높은 검색 성능 차이를나타내었다.
패턴인식은 전처리, 특징추출, 식별의 과정을 거쳐 인식을 하게된다. 식별과정 에서 여러개의 패턴이 흩어져 있을 경우에 유사한 패턴끼리 클러스터링을 위하여 한 카테고리 내에서 패턴을 분할하게 된다. 클러스터링 방법에는 통계적인 방법으로 k-means 방법, ISODATA알고리즘등이 있으며〔1〕, 최근에는 신경망에 의한 클러스터링 방법으로 T, Kohonen의 LVQ(Learning Vector Quantization)가 주로 이용되었다〔6〕. Nikhil R, Pal. et al은 LVQ알고리즘을 보다 개선한 방법으로 GLVQ(Generalized LVQ, 1993)를 제안하였다〔4〕.본 논문은 GLVQ 알고니즘으로 패턴을 클러스터링 할 경우에 효율적인 특징추출 방법을 제안한다. 본 논문에서는 20명의 필기체 숫자 0에서 9까지 의 200개 패턴을 여러 가지 방법으로 특징 추출하여 GLVQ알고리즘으로 10개(0-9의 패턴) 의 클러스터로 구분하고, 해당 클러스터에서 오분류되는 패턴의 비율로서 그 효율성을 비교 하였다. 그 결과 투영조합 방법을 이용하였을 경우 98.5%의 분류율을 나타내었다.
자동차 번호판을 인식하기 위해서는 차량 영상에서 번호판을 추출하고, 추출된 번호판으로부터 문자를 분리하여야 하고, 각 문자들에 대해서 특징 벡터를 추출하고 신경망을 이용하여 인식한다. 이때 인식의 기준이 되는 특징 벡터의 선정은 데이터양의 감소뿐 만 아니라 인식 성능에 많은 영향을 미친다. 본 논문에서는 숫자를 고유 숫자(eigennumber)의 선형 조합으로 분해하여 특징 벡터를 추출하는 새로운 특징 벡터 추출 기법을 제안하고, 자동차 번호판의 숫자 인식에 적용함으로써 그 유효성을 검증하였다. 실험 결과, 고유 숫자 공간상에서 다층 퍼셉트론 신경망을 이용하여 95.3%의 인식률을 보였고, 이는 일반적인 메쉬 특징과 비교하여 약 5%의 향상된 결과이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.