• Title/Summary/Keyword: fault detection and isolation

Search Result 177, Processing Time 0.02 seconds

The method of development for enhancing reliability of missile assembly test set (유도탄 점검 장비의 신뢰성 향상을 위한 개발 방법)

  • Koh, Sang-Hoon;Han, Seok-Choo;Lee, Kye-Shin;Lee, You-Sang;Kim, Young-Kuk;Park, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.37-43
    • /
    • 2018
  • A developer solves problems with isolating failures if faults are detected when inspecting missiles using the missile assembly test set (MATS) and then resumes the testing. In order to identify faults, it is necessary to analyze the data coming from the equipment, but the information received may not be sufficient, depending on the inspection environment. In this case, the developer repeats the test until the problem is reproduced or checks the performance of each piece of equipment that is related to the fault. When this task is added, schedule management becomes problematic, and development costs rise. To solve this problem, we need to design a MATS in a systematic way to increase fault coverage while satisfying the required reliability. By designing the necessary processes for each procedure, it is possible to reduce the fault identification time when a fault is detected during operations. But it is not possible to guarantee 100% fault coverage, so we provide another method by comparing costs and effects. This paper describes a development method to enhance the reliability of the missile assembly test set; it describes the expected effects when it is adapted, and describes the limitations of this method.

A Novel Equalization Method of Multiple Transceivers of Multiple Input Multiple Output Antenna for Beam-farming and the Estimation of Direction of Arrival (빔조향 및 전파도래각 추정을 위한 새로운 다중입력 다중출력 안테나 송수신부 구성방법)

  • 이성종;이종환;염경환;윤찬의
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.288-300
    • /
    • 2002
  • In this paper, a novel method of equalization of RF transceivers is suggested for MIMO(Multiple Input Multiple Output) antenna actively studied for high speed data transmission in the recent IMT-2000 system. The core of suggestion is in equalizing the transfer characteristics of multiple transceivers using feedback and memory during the predefined calibration time. This makes it possible to weight the signals in the intermediate frequency, which is easier in the application of recently developed DoA(Direction of Arrival) algorithms. In addition, the time varying optimum cell formation according to traffic is feasible by antenna beam-forming based on the DoA information. The suggested method of equalizing multiple transceivers are successfully verified using envelope simulation. two outputs. This paper is concerned with the diagnosis of multiple crosstalk-faults in OSM. As the network size becomes larger in these days, the convent.nal diagnosis methods based on tests and simulation be.me inefficient, or even more impractical. We propose a simple and easily implementable alg?ithm for detection and isolation of the multiple crosstalk-faults in OSM. Specifically, we develop an algorithm for isolation of the source fault in switc.ng elements whenever the multiple crosstalk-faults are.etected in OSM. The proposed algorithm is illustrated by an example of 16$\times$16 OSM.

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Development of Korean Maintainability-Prediction Software for Application to the Detailed Design Stages of Weapon Systems (무기체계의 상세설계 단계에 적용을 위한 한국형 정비도 예측 S/W 개발)

  • Kwon, Jae-Eon;Kim, Su-Ju;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.102-111
    • /
    • 2021
  • Maintainability is a major design parameter that includes availability as well as reliability in a RAM (reliability, availability, maintainability) analysis, and is an index that must be considered when developing a system. There is a lack of awareness of the importance of predicting and analyzing maintainability; therefore, it is dependent on past-experience data. To improve the utilization rate, maintainability must be managed as a key indicator to meet the user's requirements for failure maintenance time and to reduce life-cycle costs. To improve the maintainability-prediction accuracy in the detailed design stage, we present a maintainability-prediction method that applies Method B of the Military Standardization Handbook (MIL-HDBK-472) Procedure V, as well as a Korean maintainability-prediction software package that reflects the system complexity.

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

Built-In-Test Coverage Analysis Considering Failure Mode of Electronics Components (전자부품 고장모드를 고려한 Built-In-Test 성능분석)

  • Seo, Joon-Ho;Ko, Jin-Young;Park, Han-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.449-455
    • /
    • 2015
  • Built-In-Test(hereafter: BIT) is necessary functionality for aircraft flight safety and it requires a high failure detection capacity of more than 95 % in the case of avionics equipment. The BIT coverage analysis is needed to make sure that BIT meets its fault diagnosis capability. FMECA is used a lot of for the BIT coverage analysis. However, in this paper, the BIT coverage analysis based on electronic components is introduced to minimize the analytical error. Further, by applying the failure mode of the electronic components and excluding electronic components that do not affect flight safety, the BIT coverage analysis can be more accurate. Finally, BIT demo was performed and it was confirmed that the performance of the actual BIT matches the analysis of BIT performance.

Development of hyperspectral image-based detection module for internal defect inspection of 3D-IC semiconductor module (3D-IC 반도체 모듈의 내부결함 검사를 위한 초분광 영상기반 검출모듈 개발)

  • Hong, Suk-Ju;Lee, Ah-Yeong;Kim, Ghiseok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.146-146
    • /
    • 2017
  • 현대의 스마트폰 및 태블릿pc등을 가능하게 만든 집적 기술 중의 하나는 3차원 집적 회로(3D-IC)와 같은 패키징 기술이다. 이러한 첨단 3차원 집적 기술은 메모리집적을 통한 대용량 메모리 모듈 개발뿐만 아니라, 메모리와 프로세서의 집적, high-end FPGA, Back side imaging (BSI) 센서 모듈, MEMS 센서와 ASIC 집적, High Bright (HB) LED 모듈 등에 적용되고 있다. 3D-IC의 3차원 모듈 제작 시에는 기존에 발생하지 않았던 여러 가지 파괴 모드들이 발생하고 있는데 Thermal/Photonic Emission 장비 등 기존의 2차원 결함분리 (Fault Isolation) 기술로는 첨단의 3차원 적층 제품들에서 발생하는 불량을 비파괴적으로 혹은 3차원적으로 분리하는 것이 불가능하므로, 비파괴 3차원 결함 분리 기술은 향후 선행 제품 적기 개발에 매우 필수적인 기술이다. 본 연구는 3D-IC 반도체의 비파괴적 내부결함 검사를 위하여 가시광선-근적외선 대역(351nm~1770nm)의 InGaAs (Indium Galium Arsenide) 계열 영상검출기 (imaging detector)를 사용하여 분광 시스템 광학 설계를 통한 초분광 영상 기반 검출 모듈을 제작하였다. 제작된 초분광 영상 기반 검출 모듈을 이용하여 구리 회로 위에 실리콘 웨이퍼가 3단 적층 된 반도체 더미 샘플의 초분광 영상을 촬영하였으며, 촬영된 초분광 영상에 대하여 Chemometrics model 기반의 분석기술을 적용하여 실리콘 웨이퍼 내부의 집적 구조에 대한 검사가 가능함을 확인하였다.

  • PDF