• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.023 seconds

Identification of fault signal for rotating machinery diagnosis using Blind Source Separation (BSS) (BSS를 이용한 회전 기계 진단 신호 분석)

  • Seo, Jong-Soo;Lee, Jeong-Hak;J. K. Hammond
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.839-845
    • /
    • 2003
  • This paper introduces multichannel blind source separation (BSS) and multichannel blind deconvolution (MBD) based on higher order statistics of signals from convolutive mixtures. In particular, we are concerned with the case that the number of inputs is the same as the number of outputs. Simulations for two input two output cases are carried out and their performances are assessed. One of the major applications of those sequential algorithms (BSS and MBD) is demonstrated through the fault signal detection from only a single measurement of rotating machine, which offers a certain degree of practicability in the engineering field such as machine health monitoring or condition monitoring.

  • PDF

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

Vibration Monitoring and Diagnosis System Framework for 3MW Wind Turbine (3MW 풍력발전기 진동상태감시 및 진단시스템 프레임워크)

  • Son, Jong-Duk;Eom, Seung-Man;Kim, Sung-Tae;Lee, Ki-Hak;Lee, Jeong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.553-558
    • /
    • 2015
  • This paper aims at making a dedicated vibration monitoring and diagnosis framework for 3MW WTG(wind turbine generator). Within the scope of the research, vibration data of WTG drive train are used and WTG operating conditions are involved for dividing the vibration data class which included transient and steady state vibration signals. We separate two health detections which are CHD(continuous health detection) and EHD(event health detection). CHD has function of early detection and continuous monitoring. EHD makes the use of finding vibration values of fault components effectively by spectrum matrix subsystem. We proposed framework and showed application for 3MW WTG in a practical point of view.

Fault Detection of Governor Systems Using Discrete Wavelet Transform Analysis

  • Kim, Sung-Shin;Bae, Hyeon;Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.662-673
    • /
    • 2012
  • This study introduces a condition diagnosis technique for a turbine governor system. The governor system is an important control system to handle turbine speed in a nuclear power plant. The turbine governor system includes turbine valves and stop valves which have their own functions in the system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine governor control system are detected and identified. To achieve automatic detection of valve status, time-based and frequency-based analysis is employed. In this study, a new approach, wavelet decomposition, was used to extract specific features from the pressure signals of the governor and stop valves. The extracted features, which represent the operating conditions of the turbine governor system, include important information to control and diagnose the valves. After extracting the specific features, decision rules were used to classify the valve conditions. The rules were generated by a decision tree algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based analysis were compared to detection results using time- and frequency-based approaches. Compared with the several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage of easier application without auxiliary features.

A Fault Diagnosis and Control Integrated System for an SP-100 Space Reactor (SP-100 우주선 원자로를 위한 고장진단 및 제어 통합 시스템)

  • Na, Man-Gyun;Yang, Heon-Young;Lim, Dong-Hyuk;Lee, Yoon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.231-232
    • /
    • 2007
  • In this paper, a fault diagnosis and control integrated system (FDCIS) was developed to control the thermoelectric (TE) power in the SP-100 space reactor. The objectives of the proposed model predictive control were to minimize both the difference between the predicted TE power and the desired power, and the variation of control drum angle that adjusts the control reactivity. Also, the objectives were subject to maximum and minimum control drum angle and maximum drum angle variation speed. A genetic algorithm was used to optimize the model predictive controller. The model predictive controller was integrated with a fault detection and diagnostics algorithm so that the controller can work properly even under input and output measurement faults. With the presence of faults, the control law was reconfigured using online estimates of the measurements. Simulation results of the proposed controller showed that the TE generator power level controlled by the proposed controller could track the target power level effectively even under measurement faults, satisfying all control constraints.

  • PDF

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

The Power Line Deflection Monitoring System using Panoramic Video Stitching and Deep Learning (딥 러닝과 파노라마 영상 스티칭 기법을 이용한 송전선 늘어짐 모니터링 시스템)

  • Park, Eun-Soo;Kim, Seunghwan;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • There are about nine million power line poles and 1.3 million kilometers of the power line for electric power distribution in Korea. Maintenance of such a large number of electric power facilities requires a lot of manpower and time. Recently, various fault diagnosis techniques using artificial intelligence have been studied. Therefore, in this paper, proposes a power line deflection detect system using artificial intelligence and computer vision technology in images taken by vision system. The proposed system proceeds as follows. (i) Detection of transmission tower using object detection system (ii) Histogram equalization technique to solve the degradation in image quality problem of video data (iii) In general, since the distance between two transmission towers is long, a panoramic video stitching process is performed to grasp the entire power line (iv) Detecting deflection using computer vision technology after applying power line detection algorithm This paper explain and experiment about each process.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Development of Arc Detection Algorithm for 50 kW Photovoltaic System (50kW 태양광 설비의 아크 검출 알고리즘 개발)

  • Kim, Sang-Kyu;Lee, Chang-Sung;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • In this paper, we developed an algorithm to detect arc of PV power plant through frequency analysis. For arc detection based on frequency analysis, the filter should be designed to emphasize the difference between the arc state and the normal state. Therefore, in this paper, we analyzed the arc detection performance according to various filter structures. The arc detection algorithm developed in this paper extracts the filtering signal on current by using various filters and then calculates the frequency components and total energy using the FFT. In the final step, the arc is detected using the calculated energy magnitude. In order to verify the performance of the proposed arc detection algorithm, experiments were conducted on 51 kW solar inverters connected to power line. Through various experiments, it was confirmed that the proposed method effectively detects the arc.

A Study on the Digital Protective Relay for Generator Fault Protection (발전기 고장보호를 위한 디지털 계전기에 관한 연구)

  • Jang, Nak-Won;Park, Jeong-Do;Lee, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1232-1238
    • /
    • 2009
  • As power facilities are getting higher at capacity, the monitoring and diagnosis of generators for fault detection and protection has attracted intensive interest. In case of an after-fault in high capacity rotating machines, the recovering cost is usually very expensive and additional time is necessary for returning in a normal situation. In this paper, we developed the protection program for the generator fault protection system and each module of the digital protective relay H/W for loading the protection program. The protective relay H/W was designed to have EMC characteristics for prohibiting from fault operation in bad power systems.