Acknowledgement
본 연구는 2022년도 산업통산자원부(해양수산부) 및 산업기술평가관리원(해양수산과학기술진흥원) 연구비 지원으로 수행된 '자율운항선박 기술개발사업 (20011164, 자율운항선박 핵심 기관시스템 성능 모니터링 및 고장예측/진단 시스템 기술 개발연구)'의 연구결과입니다.
References
- Bartelmus, W., Chaari, F., Zimroz, R. and Haddar, M.(2010), "Modelling of gearbox dynamics under time-varying nonstationary load for distributed fault detection and diagnosis", European Journal of Mechanics-A/Solids, Vol. 29, No. 4, pp. 637-646. https://doi.org/10.1016/j.euromechsol.2010.03.002
- Breiman, L.(2001), "Random forests", Machine Learning, Vol. 45, No. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324
- Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O. B.(2012), "Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis".
- Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P.(2002), "SMOTE: synthetic minority over-sampling technique", Journal of Artificial Intelligence Research, Vol. 16, pp. 321-357. https://doi.org/10.1613/jair.953
- Cover, T. and Hart, P.(1967), "Nearest Neighbor Pattern Classification", IEEE Transactions on Information Theory, Vol. 13, No. 1, pp. 21-27. https://doi.org/10.1109/TIT.1967.1053964
- de Lima, A. A. et al.(2013), "On fault classification in rotating machines using fourier domain features and neural networks", In 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), IEEE, pp. 1-4.
- Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S. and Acharya, U. R.(2018), "Deep learning for healthcare applications based on physiological signals: A review", Computer methods and programs in biomedicine, Vol. 161, pp. 1-13. https://doi.org/10.1016/j.cmpb.2018.04.005
- Feng, Z. and Liang, M.(2014), "Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis", Renewable Energy, Vol. 66, pp. 468-477. https://doi.org/10.1016/j.renene.2013.12.047
- Kan, M. S., Tan, A. C. and Mathew, J.(2015), "A review on prognostic techniques for non-stationary and non-linear rotating systems", Mechanical Systems and Signal Processing, Vol. 62, pp. 1-20. https://doi.org/10.1016/j.ymssp.2015.02.016
- Lee, J. H.(2021), "Experimental Study on Application of an Anomaly Detection Algorithm in Electric Current Datasets Generated from Marine Air Compressor with Time-series Features", Journal of the Korean Society of Marine Environment & Safety, Vol. 27, No. 1, pp. 127-134. https://doi.org/10.7837/kosomes.2021.27.1.127
- Li, W., Zhu, Z., Jiang, F., Zhou, G., and Chen, G.(2015), "Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method", Mechanical Systems and Signal Processing, Vol. 50, pp. 414-426. https://doi.org/10.1016/j.ymssp.2014.05.034
- Liao, Y., Huang, R., Li, J., Chen, Z. and Li, W.(2020), "Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed", IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 10, pp. 8064-8075. https://doi.org/10.1109/tim.2020.2992829
- Pestana-Viana, D., Zambrano-Lopez, R., de Lima, A. A., Prego, T. D. M., Netto, S. L. and da Silva, E. A.(2016), "The influence of feature vector on the classification of mechanical faults using neural networks", In 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), IEEE, pp. 115-118.
- Qiao, M., Yan, S., Tang, X. and Xu, C.(2020), "Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads", IEEE Access, Vol. 8, pp. 66257-66269. https://doi.org/10.1109/access.2020.2985617
- Refaeilzadeh, P., Tang, L. and Liu, H.(2009), "Cross-validation", Encyclopedia of database systems, Vol. 5, pp. 532-538. https://doi.org/10.1007/978-0-387-39940-9_565
- Riaz, S., Elahi, H., Javaid, K. and Shahzad, T.(2017), "Vibration feature extraction and analysis for fault diagnosis of rotating machinery- a literature survey", Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 1, pp. 103-110.
- Tao, H., Wang, P., Chen, Y., Stojanovic, V. and Yang, H.(2020), "An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks", Journal of the Franklin Institute, Vol. 357, No. 11, pp. 7286-7307. https://doi.org/10.1016/j.jfranklin.2020.04.024
- Verstraete, D., Ferrada, A., Droguett, E. L., Meruane, V. and Modarres, M.(2017), "Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings", Shock and Vibration, 2017.
- Wang, B., Zhang, X., Xing, S., Sun, C. and Chen, X. (2021), "Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis", ISA transactions, Vol. 118, pp. 207-218. https://doi.org/10.1016/j.isatra.2021.01.060
- Wang, S. H.(2019), "Partial Discharge Detection in Power Line using 1D Convolutional Neural Network", Hanyang University, Graduate school, Master thesis.
- Xing, Z., Qu, J., Chai, Y., Tang, Q. and Zhou, Y.(2017), "Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine", Journal of Mechanical Science and Technology, Vol. 31, No. 2, pp. 545-553. https://doi.org/10.1007/s12206-017-0107-3
- Yuan, Z., Zhang, L., Duan, L. and Li, T.(2018), "Intelligent fault diagnosis of rolling element bearings based on HHT and CNN", In 2018 Prognostics and System Health Management Conference (PHM-Chongqing), IEEE, pp. 292-296.