Journal of Dental Rehabilitation and Applied Science
/
v.18
no.3
/
pp.205-215
/
2002
This study investigated the compressive fracture strength of Targis ceromer crown by the difference of occlusal thickness on a maxillary first premolar. Control group was a castable IPS-Empress all-ceramic crown with occlusal thickness of 1.5 mm constructed by layered technique. Experimental groups were Targis crowns having different occlusal thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, respectively. The classification of Targis group is T10, T15, T20, T25 and T15N (for no-thermocycling and occlusal thickness of 1.5mm). Ten samples were tested per each group. Except occlusal thickness, all dimension of metal die is same with axial inclination of $10^{\circ}$and marginal width 0.8mm chamfer. All crowns were cemented with Panavia F and thermocycled 1,000 times between $5^{\circ}$ and $55^{\circ}$ water bath with 10 sec dwelling time and 10 sec resting time. The compressive fracture strength was measured by universal testing machine. The results were as follows : 1. Fracture strength was increased as the occlusal thickness increased : compressive fracture strength of Group T10, T15, T20, T25 was $66.65{\pm}4.88kgf$, $75.04{\pm}3.01kgf$, $87.07{\pm}7.06kgf$ and $105.03{\pm}10.56kgf$, respectively. 2. When comparing material, Targis crown had higher fracture strength than IPS-Empress crown : the mean compressive strength of group T15 was $75.04{\pm}3.01kgf$ and the value of group Control was $37.66{\pm}4.28kgf$. 3. Fracture strength was decreased by thermocycling : the compressive fracture strength of T15 was $75.04{\pm}3.01kgf$, which is lower than $90.69{\pm}6.88kgf$ of group T15N. 4. The fracture line of crowns began at the loading point and extended along long axis of tooth. IPS-Empress showed adhesive failure pattern whereas Targis had adhesive and cohesive failure. In the SEM view, stress was distributed radially from loading point and the crack line was more prominent on Targis crown.
The purpose of this study was to evaluate the possibility of the decrease of bond strength due to increased thickness of resin base in indirect bracket bonding technique. Metal brackets were bonded to the resin blocks involving bovine lower incisors and the thickness of resin bases was increased by increments of 0.5 mm from 0.0 mm to 2.0 mm. They were divided into two groups, one group is that the thickness of resin base was increased but the loading point from the tooth surface was maintained constantly, the other group is that the loading point from the tooth surface and the resin base thickness were increased concomitantly. The shear bond strength was tested on universal testing machine and the failure patterns were assessed with the adhesive remnant index(ARI). The results were as follows: 1. When the distance from the tooth surface to the loading point was maintained constantly, shear bond strength was increased significantly according to the decrease of distance from the bracket base to the loading point and the increase of resin base thickness. 2. When the distance from the tooth surface to the loading point and the resin base thickness were increased concomitantly, shear bond strength was decreased according to the increase of resin base thickness but significant differences were ignorable. 3. There were no significant differences in ARI scores according to the change in the thickness of resin base. The results of the present study indicated that shear bond strength was not much affected by the thickness of resin base, whereas was decreased according to the increase of distance from bracket base to the loading point.
Kim, Kyoung-Kyu;Shin, Sang-Wan;Lee, Jeong-Yeol;Kim, Young-Su
The Journal of Korean Academy of Prosthodontics
/
v.45
no.4
/
pp.419-430
/
2007
Purpose: This in vitro study evaluated shear bond strengths of surface treatment porcelains with four porcelain repair systems simulating intraoral bonding of composite resin to feldspathic porcelain or pressable porcelain. Material and methods: Eighty Porcelain disks were prepared. Group A: forty disk specimens were fabricated with Feldspathic Porcelain($Omega^{(R)}900$, Vident, Menlo Park, CA, USA). Group B: forty disk specimens were fabricated with Pressable Porcelain(IPS Empress 2 ingot, Ivoclar-Vivadent, Schaan, Liechtenstein, Germany). Each groups was divided into 4 subgroups and composite resin cylinders were bonded to specimen with one of the following four systems: Clearfil Porcelain Bond(L. Morita, Tustin, CA, USA), Ulradent Porcelain Etch. (Ultradent, Salt Lake City UT, USA), Porcelain Liner-M(Sun Medical Co., Kyoto, Japan), Cimara Kit(Voco, Germany). After surface conditioning with one of the four porcelain repair systems substrate surfaces of the specimen were examined microscopically(SEM). Shear bond strengths of specimens for each subgroup were determined with a universal testing machine (5mm/min crosshead speed) after storing them in distilled water at $37{\pm}1^{\circ}C$ for 24 hours. Stress at failure was measured in $MP_a$, and mode of failure was recorded. Differences among four repair systems were analyzed with two way ANOVA and Duncan test at the 95% significance level. Results: In the scanning electron photomicrograph of the treated porcelain surface, hydrofluoric acid etched group appeared the highest roughness. The shear bond strength of the phosphoric acid etched group was not significantly(p>0.05) different between feldspathic porcelain and pressable porcelain. But in no treatment and roughened with a bur group, the shear bond strength of the feldspathic porcelain was significantly higher than that of the pressable porcelain. In hydrofluoric acid etched group, the shear bond strength of the pressable porcelain was significantly higher(p<0.05). Conclusion: 1. Treatment groups showed significantly greater shear bond strengths than no treatment group(p<0.05). 2. Group with more roughened porcelain surface did not always show higher shear bond strengths. 3. In phosphoric acid etched group, there was no significant difference in shear bond strength between feldspathic porcelain and pressable porcelain(p>0.05). However in the other groups, there were significant differences in shear bond strengths between feldspathic porcelain and pressable porcelain(p<0.05).
PURPOSE. To evaluate the effects of surface treatments on shear bond strength (SBS) between microwave and conventionally sintered zirconia core/veneers. MATERIALS AND METHODS. 96 disc shaped Noritake Alliance zirconia specimens were fabricated using YenaDent CAM unit and were divided in 2 groups with respect to microwave or conventional methods (n=48/group). Surface roughness (Ra) evaluation was made with a profilometer on randomly selected microwave (n=10) and conventionally sintered (n=10) cores. Specimens were then assessed into 4 subgroups according to surface treatments applied (n=12/group). Groups for microwave (M) and conventionally (C) sintered core specimens were as follows; $M_C$,$C_C$: untreated (control group), $M_1,C_1:Al_2O_3$ sandblasting, $M_2,C_2$:liner, $M_3,C_3:Al_2O_3$ sandblasting followed by liner. Veneer ceramic was fired on zirconia cores and specimens were thermocycled (6000 cycles between $5^{\circ}-55^{\circ}C$). All specimens were subjected to SBS test using a universal testing machine at 0.5 mm/min, failure were evaluated under an optical microscope. Data were statistically analyzed using Shapiro Wilk, Levene, Post-hoc Tukey HSD and Student's t tests, Two-Way-Variance- Analysis and One-Way-Variance-Analysis (${\alpha}$=.05). RESULTS. Conventionally sintered specimens ($1.06{\pm}0.32{\mu}m$) showed rougher surfaces compared to microwave sintered ones ($0.76{\pm}0.32{\mu}m$)(P=.046), however, no correlation was found between SBS and surface roughness (r=-0.109, P=.658). The statistical comparison of the shear bond strengths of $C_3$ and $C_1$ group (P=.015); $C_C$ and $M_C$ group (P=.004) and $C_3$ and $M_3$ group presented statistically higher (P=.005) values. While adhesive failure was not seen in any of the groups, cohesive and combined patterns were seen in all groups. CONCLUSION. Based on the results of this in-vitro study, $Al_2O_{3-}$ sandblasting followed by liner application on conventionally sintered zirconia cores may be preferred to enhance bond strength.
Indirect composite resins are used as an popular effective esthetic material in prosthetic dentistry, often with metallic substructure that provides support for restorations. Recently, new indirect composite resins as a substitute of ceramic have been developed. These resins provide good esthetics, with a wide range of hue and chroma. And the flexural strength of those is in the range of 120-150MPa, Which is higher than that of feldspathic Ceramic, and similar th that of Dicor. Although it has many merits, one of the major clinical problems of composite resins is the bond failure between metal and resin due to insufficient interfacial bond strength. The purpose of this study was to evaluate shear bond strength of the reinforced indirect composite resin to dental alloys. Three different composite resin systems($Artglass^{(R)},\;Sculpture^{(R)},\;Targis^{(R)}$) as test groups and ceramic($VMK\;68^{(R)}$) as control group were bonded to Ni-Cr-Be alloy($Rexillium\;III^{(R)}$) and gold alloy(Deva 4). All specimens were stored at $^37{\circ}C$ distilled water for 24 hours and the half of specimens were thermocycled 2000 times at temperature from $5^{\circ}C\;to\;60^{\circ}C$. The shear bond strengths of reinforced indirect composite resins to dental alloys were measured by using the universal testing machine, and modes of debonding were observed by stereoscope and scanning electron microscope. The results were as follows: 1 The shear bond strengths of reinforced indirect composite resins to dental alloys were approximately half those of ceramic to dental alloys(P<0.01). 2. There was no significant difference between the shear bond strength of several reinforced indirect composite resins to metal. 3. Alloy type did not affect on the shear bond strengths of resin to metal, but the shear bond strengths of ceramic to gold alloys were higher than those of ceramic to Ni-Cr alloys(P<0.05). 4. The shear bond strengths of Artglass and Targil to gold alloys were significantly decreased after thermocycling treatment(P<0.01). 5. Sculpture showed cohesive, adhesive, and mixed failure modes, but Artglass and Targis showed adhesive or mixed failures. And ceramic showed cohesive and mixed failures.
Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.
PURPOSE. The purpose of this study was to determine fracture resistance and failure modes of three-unit fixed dental prostheses (FDPs) made of lithium disilicate pressed on zirconia (LZ), monolithic lithium disilicate (ML), and monolithic zirconia (MZ). MATERIALS AND METHODS. Co-Cr alloy three-unit metal FDPs model with maxillary first premolar and first molar abutments was fabricated. Three different FDPs groups, LZ, ML, and MZ, were prepared (n = 5 per group). The three-unit FDPs designs were identical for all specimens and cemented with resin cement on the prepared metal model. The region of pontic in FDPs was given 50,000 times of cyclic preloading at 2 Hz via dental chewing simulator and received a static load until fracture with universal testing machine fixed at $10^{\circ}$. The fracture resistance and mode of failure were recorded. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni's correction (${\alpha}=0.05/3=0.017$). RESULTS. A significant difference in fracture resistance was found between LZ ($4943.87{\pm}1243.70N$) and ML ($2872.61{\pm}658.78N$) groups, as well as between ML and MZ ($4948.02{\pm}974.51N$) groups (P<.05), but no significant difference was found between LZ and MZ groups (P>.05). With regard to fracture pattern, there were three cases of veneer chipping and two interfacial fractures in LZ group, and complete fracture was observed in all the specimens of ML and MZ groups. CONCLUSION. Compared to monolithic lithium disilicate FDPs, monolithic zirconia FDPs and lithium disilicate glass ceramics pressed on zirconia-based FDPs showed superior fracture resistance while they manifested comparable fracture resistances.
Journal of the korean academy of Pediatric Dentistry
/
v.35
no.2
/
pp.195-204
/
2008
Orthodontic brackets often need to be bonded to porcelain such as porcelain fused to metal crowns and porcelain jacket crowns. The purpose of this study was to evaluate the clinical usability of direct bonding system on porcelain teeth by measuring shear bond strength according to various conditions and observing adhesive failure patterns. The specimens, 20 maxillary premolars and 80 porcelain teeth that were produced by duplication of the labial surface of a maxillary first premolar were used and randomly divided into four groups of twenty teeth each. The 5 different preparation procedures tested: (1) application of 37% phosphoric acid on natural teeth, (2) sandblasting on porcelain surfaces, (3) sandblasting and application of 9.6% hydrofluoric acid on porcelain surfaces, (4) sandblasting and application of silane on porcelain surface, (5) sandblasting and application of 9.6% hydrofluoric acid and silane on porcelain surfaces. The metal brackets were bonded with Transbond $XT^{(R)}$ bonding material. The shear bond strength was tested by the micro universal testing machine(Kyung-Sung, Korea) and the amount of residual adhesive on the tooth surface after debonding was examined by stereoscope and assessed with an adhesive remnant index. The results of this study suggest that the direct bonding system on porcelain teeth with sandblasting, HF and porcelain primer is clinically useful.
This study evaluated shear bond strength between porcelain and resin cement according to various surface treatments of porcelain, and surface condition of debonded porcelain. 50 porcelain specimens(Celay block A2M7) and composite resin specimens(Clearfil Photo-Bright) were prepared, and divided into 5 experimental groups according to the treatment method of porcelain surface. 5 experimental groups by surface treatments were as follows; CONTROL Group : No surface treatment was done on the surface of porcelains. SAND Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds. HF Group: The surface of porcelains were etched with 8% Hydrofluoric acid for 4 minutes. SIL Group: The surface of porcelains were coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. SAND+HF+SIL Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds and etched with 8% Hydrofluoric acid for 4 minutes, and coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. After surface treatments on the prepared porcelain surface two pastes of Panavia 21$^{(R)}$ were mixed, they were applied between composite resin block and porcelain surface, and then excessive resin cements were removed, and its margin was surrounded with Oxyguard II. All specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron testing machine between porcelains and resin cements, and debonded porcelain surfaces were observed under Scanning Electon Microscope(Hitachi S-2300) at 20kvp. The values from each group were compared statistically by Student's t-test. The obtained results were as follows; 1. The shear bond strength without surface treatment of porcelain was the lowest among all experimental groups(p<0.05). 2. The detached porcelain surface with sandblasting alone had more remarkable cracks than with only Hydrofluoric Acid or Silane coupling 2gent, but showed the lowest value of shear bond strength among surface treated groups(p<0.05), 3. When porcelain surface was treated by hydrofluoric acid, it affected shear bond strength more than silane coupling agent, but there were no significant statistical differences(p>0.05). 4. When three methods were combined to increase shear bond strength between porcelains and resin cements, its value was the highest than the others(p<0.05). 5. In Scannig Electron Micrograph of detached porcelain surface with no treatment, the sample revealed adhesive failure between the porcelain and resin cement whereas detached porcelain surface with combination of three method cohesive failure on the porcelain.
Statement of problem: The failure of adhesion between the resilient denture liner and the denture base is a serious problem in clinic. Purpose: The purpose of this study was to evaluate the effect of denture base resin surface pretreatments (mechanical and/or chemical) on the tensile bond strength between a resilient liner and processed denture resin. Material and method. Acrylic-based resilient liners (Soft liner; GC co., Japan & Coe-Soft; GC America Inc. USA) and silicone-based resilient liners (Mucosoft, Parkell Inc., USA & Dentusil; Bosworth co., USA) were used. Specimens in each soft lining material were divided two groups with or without mechanical pretreatment. Each denture base specimen received 1 of 4 chemical pretreatments including: (1) no treatment, (2) 30-s acetone treatment, (3) 15-s methylene chloride treatment, (4) 180-s methyl methacrylate treatment. All specimens were thermocycled and placed under tension until failure in a universal testing machine. Results: 1. Silicone-based resilient liners exhibited significantly higher tensile bond strengths than acrylic-based resilient liners (P<.05). 2. Grinding the denture base resin improved tensile bond strengths of silicone-based resilient liners, but reduced tensile bond strengths of acrylic-based resilient liners (P<.05). 3. In acrylic-based resilient liners, treating with acetone significantly increased the bond strength of Soft liner and treating with methyl methacrylate significantly increased the bond strength of Coe-Soft (P<.05). However they were not effective compared to silicone-based resilient liner. 4. In silicone-based resilient liners, treating with all chemical etchants significantly increased the bond strength of Mucosoft to denture base, and treating with methylene chloride and methyl methacrylate increased the bond strength of Dentusil to denture base (P<.05). Conclusion: Although chemical and mechanical pretreatments were not effective on tensile bond strength of acrylic-based resilent liner to denture base, treating the denture base resin surface with appropriate chemical etchants after mechanical pretreatment significantly increased the tensile bond strength of silicone-based resilient liner to denture base.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.