• Title/Summary/Keyword: f-cosymplectic manifold

Search Result 5, Processing Time 0.019 seconds

On f-cosymplectic and (k, µ)-cosymplectic Manifolds Admitting Fischer -Marsden Conjecture

  • Sangeetha Mahadevappa;Halammanavar Gangadharappa Nagaraja
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.507-519
    • /
    • 2023
  • The aim of this paper is to study the Fisher-Marsden conjucture in the frame work of f-cosymplectic and (k, µ)-cosymplectic manifolds. First we prove that a compact f-cosymplectic manifold satisfying the Fisher-Marsden equation R'*g = 0 is either Einstein manifold or locally product of Kahler manifold and an interval or unit circle S1. Further we obtain that in almost (k, µ)-cosymplectic manifold with k < 0, the Fisher-Marsden equation has a trivial solution.

ALMOST α-COSYMPLECTIC f-MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Beyendi, Selahattin;Aktan, Nesip;Sivridag, Ali Ihsan
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.175-185
    • /
    • 2020
  • In this paper, we introduce almost α-Cosymplectic f-manifolds endowed with a semi-symmetric non-metric connection and give some general results concerning the curvature of such connection. In particular, we study some curvature properties of an almost α-cosymplectic f-manifold equipped with semi-symmetric non-metric connection.

Canonical foliations of almost f - cosymplectic structures

  • Pak, Hong-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.89-94
    • /
    • 2002
  • The present paper mainly treats with almost f-cosymplectic manifolds. This notion contains almost cosymplectic and almost Kenmotsu manifolds. Almost cosymplectic manifolds introduced in [1] have been studied by many schalors, say [2], [3], [4], and almost Kenmotsu manifolds introduced in [5] have been studied in [6], [7]. The present paper studies some geometrical and topological properties of the canonical foliation defined by the contact distribution of an almost f-cosymplectic manifold. The purpose of the present paper is to extend the results obtained in [8], [9].

  • PDF

A NOTE ON SPECTRAL CHARACTERIZATIONS OF COSYMPLECTIC FOLIATIONS

  • Park, Jin-Suk;Cho, Kwan-Ho;Sohn, Won-Ho;Lee, Jae-Don
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.917-926
    • /
    • 1994
  • Let ($M, G_M, F$) be a (p+q)-dimensional Riemannian manifold with a foliation F of codimension q and a bundle-like metric $g_M$ with respect to F ([9]). Aside from the Laplacian $\bigtriangleup_g$ associated to the metric g, there is another differnetial operator, the Jacobi operator $J_D$, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum isdiscrete as a consequence of the compactness of M. The study of the spectrum of $\bigtriangleup_g$ acting on functions or forms has attracted a lot of attention. In this point of view, the present authors [7] have studied the spectrum of the Laplacian and the curvature of a compact orientable cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur and L. Vanhecke [6] studied the spectral geometry for Riemannian foliations. The purpose of the present paper is to study the relation between two spectra and the transversal geometry of cosymplectic foliations. We shall be in $C^\infty$-category. Manifolds are assumed to be connected.

  • PDF

ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS

  • Kim, Jeong-Sik;Prasad, Rajendra;Tripathi, Mukut-Mani
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.953-961
    • /
    • 2002
  • Generalized Ricci-recurrent trans-Sasakian manifolds are studied. Among others, it is proved that a generalized Ricci-recurrent cosymplectic manifold is always recurrent Generalized Ricci-recurrent trans-Sasakian manifolds of dimension $\geq$ 5 are locally classified. It is also proved that if M is one of Sasakian, $\alpha$-Sasakian, Kenmotsu or $\beta$-Kenmotsu manifolds, which is gener-alized Ricci-recurrent with cyclic Ricci tensor and non-zero A (ξ) everywhere; then M is an Einstein manifold.