• 제목/요약/키워드: f-cosymplectic manifold

검색결과 5건 처리시간 0.018초

On f-cosymplectic and (k, µ)-cosymplectic Manifolds Admitting Fischer -Marsden Conjecture

  • Sangeetha Mahadevappa;Halammanavar Gangadharappa Nagaraja
    • Kyungpook Mathematical Journal
    • /
    • 제63권3호
    • /
    • pp.507-519
    • /
    • 2023
  • The aim of this paper is to study the Fisher-Marsden conjucture in the frame work of f-cosymplectic and (k, µ)-cosymplectic manifolds. First we prove that a compact f-cosymplectic manifold satisfying the Fisher-Marsden equation R'*g = 0 is either Einstein manifold or locally product of Kahler manifold and an interval or unit circle S1. Further we obtain that in almost (k, µ)-cosymplectic manifold with k < 0, the Fisher-Marsden equation has a trivial solution.

ALMOST α-COSYMPLECTIC f-MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Beyendi, Selahattin;Aktan, Nesip;Sivridag, Ali Ihsan
    • 호남수학학술지
    • /
    • 제42권1호
    • /
    • pp.175-185
    • /
    • 2020
  • In this paper, we introduce almost α-Cosymplectic f-manifolds endowed with a semi-symmetric non-metric connection and give some general results concerning the curvature of such connection. In particular, we study some curvature properties of an almost α-cosymplectic f-manifold equipped with semi-symmetric non-metric connection.

Canonical foliations of almost f - cosymplectic structures

  • Pak, Hong-Kyung
    • 한국산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.89-94
    • /
    • 2002
  • 본 논문은 주로 개 f-코심플렉틱 다양체를 다룬다. 이 개념은 개 코심플렉틱 다양체와 개 겐모츠 다양체를 포함한다. 개 코심플렉틱 다양체는 [1]에서 도입된 이래 [2], [3], [4] 등 여러 학자들에 의해 연구되어져 왔으며 개 겐모츠 다양체는 [5]에서 도입된 이래 [6], [7] 등에서 연구되어져 왔다. 본 논문에서는 개f-코심플렉틱 다양체의 접촉 초함수에 의해 정의되는 정규 엽층구조의 기하학적 성질을 연구한다. 본 논문의 목적은 [8], [9]에서 얻은 성과를 확장하는 것이다.

  • PDF

A NOTE ON SPECTRAL CHARACTERIZATIONS OF COSYMPLECTIC FOLIATIONS

  • Park, Jin-Suk;Cho, Kwan-Ho;Sohn, Won-Ho;Lee, Jae-Don
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.917-926
    • /
    • 1994
  • Let ($M, G_M, F$) be a (p+q)-dimensional Riemannian manifold with a foliation F of codimension q and a bundle-like metric $g_M$ with respect to F ([9]). Aside from the Laplacian $\bigtriangleup_g$ associated to the metric g, there is another differnetial operator, the Jacobi operator $J_D$, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum isdiscrete as a consequence of the compactness of M. The study of the spectrum of $\bigtriangleup_g$ acting on functions or forms has attracted a lot of attention. In this point of view, the present authors [7] have studied the spectrum of the Laplacian and the curvature of a compact orientable cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur and L. Vanhecke [6] studied the spectral geometry for Riemannian foliations. The purpose of the present paper is to study the relation between two spectra and the transversal geometry of cosymplectic foliations. We shall be in $C^\infty$-category. Manifolds are assumed to be connected.

  • PDF

ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS

  • Kim, Jeong-Sik;Prasad, Rajendra;Tripathi, Mukut-Mani
    • 대한수학회지
    • /
    • 제39권6호
    • /
    • pp.953-961
    • /
    • 2002
  • Generalized Ricci-recurrent trans-Sasakian manifolds are studied. Among others, it is proved that a generalized Ricci-recurrent cosymplectic manifold is always recurrent Generalized Ricci-recurrent trans-Sasakian manifolds of dimension $\geq$ 5 are locally classified. It is also proved that if M is one of Sasakian, $\alpha$-Sasakian, Kenmotsu or $\beta$-Kenmotsu manifolds, which is gener-alized Ricci-recurrent with cyclic Ricci tensor and non-zero A (ξ) everywhere; then M is an Einstein manifold.