• Title/Summary/Keyword: extreme distributions

Search Result 173, Processing Time 0.028 seconds

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

Sharp Expectation Bounds on Extreme Order Statistics from Possibly Dependent Random Variables

  • Yun, Seokhoon
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.455-463
    • /
    • 2004
  • In this paper, we derive sharp upper and lower expectation bounds on the extreme order statistics from possibly dependent random variables whose marginal distributions are only known. The marginal distributions of the considered random variables may not be the same and the expectation bounds are completely determined by the marginal distributions only.

Compromise possibility portfolio selections

  • Tanaka, Hideo;Guo, Peijun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.659-662
    • /
    • 1998
  • In this paper, lower and upper possibility distributions are identified to reflect two extreme opinions in portfolio selection problems based on upper and lower possibility distributions are formalized as quadratic programming problems. Portfolios for compromising two extreme opinions from upper and lower possibility distributions and balancing the opinions of a group of experts can be obtained by quadratic optimization problems, respectively.

  • PDF

On the Applicability of the Extreme Distributions to Korean Stock Returns (한국 주식 수익률에 대한 Extreme 분포의 적용 가능성에 관하여)

  • Kim, Myung-Suk
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.115-126
    • /
    • 2007
  • Weekly minima of daily log returns of Korean composite stock price index 200 and its five industry-based business divisions over the period from January 1990 to December 2005 are fitted using two block-based extreme distributions: Generalized Extreme Value(GEV) and Generalized Logistic(GLO). Parameters are estimated using the probability weighted moments. Applicability of two distributions is investigated using the Monte Carlo simulation based empirical p-values of Anderson Darling test. Our empirical results indicate that both the GLO and GEV models seem to be comparably applicable to the weekly minima. These findings are against the evidences in Gettinby et al.[7], who claimed that the GEV model was not valid in many cases, and supported the significant superiority of the GLO model.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Extreme Values of Mixed Erlang Random Variables (혼합 얼랑 확률변수의 극한치)

  • Kang, Sung-Yeol
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.145-153
    • /
    • 2003
  • In this Paper, we examine the limiting distributional behaviour of extreme values of mixed Erlang random variables. We show that, in the finite mixture of Erlang distributions, the component distribution with an asymptotically dominant tail has a critical effect on the asymptotic extreme behavior of the mixture distribution and it converges to the Gumbel extreme-value distribution. Normalizing constants are also established. We apply this result to characterize the asymptotic distribution of maxima of sojourn times in M/M/s queuing system. We also show that Erlang mixtures with continuous mixing may converge to the Gumbel or Type II extreme-value distribution depending on their mixing distributions, considering two special cases of uniform mixing and exponential mixing.

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

Frequency Analysis of Extreme Rainfall by L-Moments (L-모멘트법에 의한 극치강우의 빈도분석)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk;Kim, Byung-Jun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.225-228
    • /
    • 2002
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.

  • PDF