References
- DE HAAN, L. (1984). 'Slow variation and characterization of domains of attraction' in Statistical Extremes and Applications (J. Tiago de Oliveira, ed.), 31-48, Reidel, Dordrecht
- DE HAAN, L. AND STADTMULLER, U. (1996). 'Generalized regular variation of second order', Journal of the Australian Mathematical Society, A61, 381-395 https://doi.org/10.1017/S144678870000046X
- DEKKERS, A.L.M. AND DE HAAN, L. (1989). 'On the estimation of the extreme-value index and large quantile estimation', Annals of Statistics, 17, 1795-1832 https://doi.org/10.1214/aos/1176347396
- DEKKERS, A.L.M., EINMAHL, J.H.J. AND DE HAAN, L. (1989). 'A moment estimator for the index of an extreme-value distribution', Annals of Statistics, 17, 1833-1855 https://doi.org/10.1214/aos/1176347397
- DRAISMA, G., DE HAAN, L., PENG, L. AND PEREIRA, T.T. (1999). 'A bootstrap-based method to achieve optimality in estimating the extreme-value index', Extremes, 2, 367-404 https://doi.org/10.1023/A:1009900215680
- DREES, H. (1995). 'Refined Pickands estimators of the extreme value index', Annals of Statistics, 23, 2059-2080 https://doi.org/10.1214/aos/1034713647
- GOMES, M.I., DE HAAN, L. AND PENG, L. (2002). 'Semi-parametric estimation of the second order parameter in statistics of extremes', Extremes, 5, 387-414 https://doi.org/10.1023/A:1025128326588
- HILL, B.M. (1975). 'A simple general approach to inference about the tail of a distribution', Annals of Statistics, 3, 1163-1174 https://doi.org/10.1214/aos/1176343247
- PICKANDS, J. (1975). 'Statistical inference using extreme order statistics', Annals of Statistics, 3, 11-131
- SERFLING, R.J. (1980). Approximation Theorems of Mathematical Statistics, John Wiley & Sons, New York
- YUN, S. (2002). 'On a generalized Pickands estimator of the extreme value index', Journal of Statistical Planning and Inference, 102, 38-409