On the Applicability of the Extreme Distributions to Korean Stock Returns

한국 주식 수익률에 대한 Extreme 분포의 적용 가능성에 관하여

  • Published : 2007.11.30

Abstract

Weekly minima of daily log returns of Korean composite stock price index 200 and its five industry-based business divisions over the period from January 1990 to December 2005 are fitted using two block-based extreme distributions: Generalized Extreme Value(GEV) and Generalized Logistic(GLO). Parameters are estimated using the probability weighted moments. Applicability of two distributions is investigated using the Monte Carlo simulation based empirical p-values of Anderson Darling test. Our empirical results indicate that both the GLO and GEV models seem to be comparably applicable to the weekly minima. These findings are against the evidences in Gettinby et al.[7], who claimed that the GEV model was not valid in many cases, and supported the significant superiority of the GLO model.

Keywords

References

  1. Ahmad, M.I., Applications of statistics in flood frequency analysis, PhD Thesis, University of St. Andrews, 1988
  2. Cunane, C., 'Unbiased plotting position- a review,' Journal of Hydrology, Vol.37(1978), pp.205-222 https://doi.org/10.1016/0022-1694(78)90017-3
  3. D'Agnostino, R.B. and M.A. Stephens, Goodness of fit techniques. Series Statistics: Textbooks and Monographs, Marcel Dekker, New York, Vol.68(1986)
  4. De Vries, G.C., J. Danielsson, Value at risk and extreme returns. Timbergen Institute, Erasmus University Discussion paper, 1997
  5. Ferguson, T.S., A course in large sample theory, Texts in Statistical Science, Chapman & Hall, New York, 1996
  6. Fisher, R.A., L.H.C. Tippett, 'Limiting forms of the frequency distribution of the largest or smallest member of a sample,' Proceedings of the Cambridge Philosophical Society, Vol.24(1928), pp.180-190
  7. Gettinby, G.D., C.D. Sinclair, D.M. Power, and R.A. Brown, 'An analysis of the distribution of extremes in indices of share returns in the US, UK and Japan from 1963 to 2000,' International Journal of Financial Economics, Vol.11(2006), pp.97-113 https://doi.org/10.1002/ijfe.280
  8. Gilli, M. and E. Kellezi, 'An application of extreme value theory for measuring financial risk,' Computational Economics, Vol.27 (2006), pp.1-23 https://doi.org/10.1007/s10614-005-9013-3
  9. Greenwood, J.A., J.M. Landwehr, N.C. Matalas, and J.R. Wallis, 'Probability weighted moments:definition and relation to parameters of several distributions expressable in inverse form,' Water Resource Research, Vol.15(1979), pp.1049-1054 https://doi.org/10.1029/WR015i005p01049
  10. Harter, H.L., 'Another look at plotting positions,' Communications in Statistics:Theory and Methods, Vol.13(1984), pp.1613- 1633 https://doi.org/10.1080/03610928408828781
  11. Hosking, J.R.M., 'L-moments:analysis and estimation of distributions using combinations of order statistics,' Journal of the Royal Statistical Society Series B, Vol.52(1990), pp.105-124
  12. Hosking, J.R.M., J.R. Wallis, and E.F. Wood, 'Estimation of the generalized extreme value distribution by the method of probability- weighted moments,' Technometrics, Vol.27(1985), pp.251-261 https://doi.org/10.2307/1269706
  13. Hosking, J.R.M. and J.R. Wallis, 'Parameter and quantile estimation for the generalized pareto distribution,' Technometrics, Vol.29(1987), pp.339-349 https://doi.org/10.2307/1269343
  14. Jenkinson, A.F., 'Frequency distribution of the annual maximum or minimum values of meteorological elements,' Quarterly Journal of the Royal Meteorological Society, Vol.81(1955), pp.158-171 https://doi.org/10.1002/qj.49708134804
  15. Landwehr, J.M., Matalas, N.C., Wallis, J.R., 'Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles,' Water Resource Research, Vol.15(1979), pp.1055-1064 https://doi.org/10.1029/WR015i005p01055
  16. Login, F.M., 'The asymptotic distribution of extreme stock market returns,' Journal of Business, Vol.69(1996), pp.383-408 https://doi.org/10.1086/209695
  17. Login, F.M., 'From value at risk to stress testing:the extreme value approach,' Journal of Banking and Finance, Vol.24(2000), 1097-1130 https://doi.org/10.1016/S0378-4266(99)00077-1
  18. Nam, J.H. and S.D. Kim, 'VAR estimation using the nonparametric approach,' Review of Financial Economics, Vol.15(2001), pp. 87-113
  19. Prescott, P. and A.T. Walden, 'Maximumlikelihood estimation of the parameters of generalized extreme-value distribution,' Biometrika, Vol.67(1980), pp.723-724 https://doi.org/10.1093/biomet/67.3.723
  20. Robson, A. and D. Reed, Procedures for flood frequency estimation. Flood estimation handbook, Centre for ecology and hydrology. Wallingford, UK, Vol.3(1999)
  21. Stephens, M.A., 'EDF statistics for goodness of fit and some comparisons,' Journal of the American Statistical Association, Vol.69(1974), pp.730-737 https://doi.org/10.2307/2286009
  22. Stephens, M.A., 'Goodness of fit for the extreme value distribution,' Biometrika, Vol.64(1977), pp.583-588 https://doi.org/10.1093/biomet/64.3.583