Jain 등은 한 지문 영상에 특징점 기반 지문 정합 방법과 필터뱅크 기반 지문 정합 방법을 적용해 두 정합 방법의 성능을 혼합하는 혼합형 지문정합 방법을 제안하고, 이 방법이 두 가지 각 정합 방법에 비해 높은 성능을 보인다는 것을 실험을 통해 입증하였다[l]. 그러나 이 방법은 혼합을 수행할 때 두 정합 방법을 별도로 수행한 후, 각 방법의 정합도(matching score)에 가중치를 부여해 최종 정합도를 결정하므로 두 정합 방법의 특성을 상쇄 시키는 결과를 얻게 된다. 본 논문에서는 두 가지 정합 방법을 특징값 추출 과정에서 혼합하는 방법을 제안하였다. 이 방법은 필터뱅크 기반 방법보다는 낮은 ERR(Equal eRror Rate)을 보이나 특징점 기반 방법보다 높은 ERR을 보였다. 이에 본 논문에서는 적응적인 정합도 혼합방법을 제안하여, 두 가지 방법의 특성을 살리도록 적응적으로 정합도를 선택하는 방법을 취했다. 이 방법을 이용해 Jain 등의 혼합형 방법보다 더 낮은 ERR을 얻을 수 있었다. 제안한 방법에 따라 NIST Special Database 14 지문 데이타로 실험한 결과 ERR에서 약 1%의 성능 향상을 보였다.
본 논문은 Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로를 제안한다. 제안하는 회로는 영상의 매 프레임 마다 슬라이딩 윈도우를 적용하여 Haar-like 특징을 추출하고 보행자 및 차량을 인식한다. Haar-like 특징 추출 회로는 슬라이딩 윈도우 당 200개의 Haar-like 특징을 추출하며, 추출된 특징들은 AdaBoost 인식 회로에서 사용된다. 제안하는 회로는 속도 향상을 위해 병렬 회로 구조를 적용하였으며 두 개의 슬라이딩 윈도우가 동시에 보행자 또는 차량을 인식한다. 제안하는 고성능 보행자 및 차량 인식 회로는 Verilog HDL로 설계하였으며 130nm 표준 셀 라이브러리를 이용하여 게이트 수준의 회로로 합성하였다. 합성된 회로는 1,388,260개의 게이트로 구성되며 최대 동작 주파수는 203MHz이다. 제안하는 회로는 $640{\times}480$ 영상을 초당 약 47.8장 처리할 수 있기 때문에 보행자와 차량을 실시간으로 인식하기 위해 사용될 수 있다.
사람이 어떤 문장을 보고 그 문장에 대해 이해하는 것은 문장 안에서 주요한 단어를 이미지로 연상시켜 그 문장에 대해 이해한다. 이러한 연상과정을 컴퓨터가 할 수 있도록 하는 것을 text-to-image라고 한다. 기존 딥 러닝 기반 text-to-image 모델은 Convolutional Neural Network(CNN)-Long Short Term Memory(LSTM), bi-directional LSTM을 사용하여 텍스트의 특징을 추출하고, GAN에 입력으로 하여 이미지를 생성한다. 기존 text-to-image 모델은 텍스트 특징 추출에서 기본적인 임베딩을 사용하였으며, 여러 모듈을 사용하여 이미지를 생성하므로 학습 시간이 오래 걸린다. 따라서 본 연구에서는 자연어 처리분야에서 성능 향상을 보인 어텐션 메커니즘(Attention Mechanism)을 문장 임베딩에 사용하여 특징을 추출하고, 추출된 특징을 GAN에 입력하여 이미지를 생성하는 방법을 제안한다. 실험 결과 기존 연구에서 사용되는 모델보다 inception score가 높았으며 육안으로 판단하였을 때 입력된 문장에서 특징을 잘 표현하는 이미지를 생성하였다. 또한, 긴 문장이 입력되었을 때에도 문장을 잘 표현하는 이미지를 생성하였다.
본 논문은 작업자와 객체들이 서로 혼재되어 있는 제조 현장에서 Mask R-CNN을 이용해 객체들을 탐지한 후 이를 Dense-Net을 통해 객체 형상을 자동으로 추출하는 기술을 담고 있다. 이는 맞춤형 공장 데이터 세트를 기반으로 하며, 대상이 되는 객체는 작업자, 기계, 도구, 컨트롤 박스 및 제품들이다. Mask R-CNN은 이미 잘 알려진 객체 인식 방식으로서 다중 객체 인식을 지원하며, Dense-Net은 중첩된 객체들로 부터 개별 객체를 추출하는 데 탁월한 효과를 보여준다. 이러한 두 가지 기술을 이용한 기초구현 결과 제조 현장 모습에서 객체들을 정상적으로 추출해 이미지를 설명할 수 있으며, 향후 객체에 대한 레이블링과 객체 간의 상호 관계를 추가해 작업자의 이상 행동을 감지하는 용도로 활용할 계획이다.
음성인식의 특징벡터로서 멜-주파수 켑스트럴 계수 (MFCC, mel-frequency cepstral coefficients)가 가장 널리 사용되고 있다. FMCC 추출과정은 입력되는 음성신호를 푸리에 변환한 후, 주파수 대역별로 필터를 취하여 에너지 값을 구하고 이산 코사인 변환을 하여 그 계수 값을 구한다. 본 논문에서는 멜-스케일 된 주파수 대역필터를 취할 때 가중함수에 의해서 구해진 각 대역필터별 가중치를 적용하여 필터의 출력 에너지를 계산한다. 여기서 가중치를 구하기 위해 사용된 가중함수는 포만트가 존재하는 대역을 중심으로 인접한 대역들이 가우시안 분포를 가지는 함수이다. 제안한 방법으로 실험한 결과, 잡음이 거의 없는 음성신호에 대해서는 기존의 MFCC를 사용했을 때와 비슷한 인식률을 보이고 잡음성분이 많을수록 가중치가 적용된 방법이 인식률에서 보다 높은 성능 향상을 가져온다.
상황인지 음악추천 서비스를 제공하기 위해서는 무엇보다 상황 또는 문맥에 따라 사용자가 선호하는 음악의 분위기를 파악할 필요가 있다. 음악 분위기 검출에 대한 기존 연구의 대부분은 수작업으로 대표구간을 선정하고, 그 구간의 특징을 이용하여 분위기를 판별한다. 이러한 접근 방법은 분류 성능이 좋은 반면 전문가의 간섭을 요구하기 때문에 새로운 음악에 대해서는 적용하기 어렵다. 더욱이, 곡의 진행에 따라 음악 분위기가 달라지기 때문에 음악의 대표 분위기를 검출하는 것이 더욱 어려워진다. 본 논문에서는 이러한 문제점들을 보완하기 위해 음악 분위기를 자동으로 판별하는 새로운 방법을 제안하였다. 먼저 곡 전체를 구조적 분석 방법을 통하여 비슷한 특성을 갖는 세그먼트들로 분리한 후 각각에 대해 분위기를 판별한다. 그리고 세그먼트별 분위기 파악 시 Thayer 의 2차원 분위기 모델에 기초한 회귀분석 방법으로 개인별 주관적 분위기 성향을 모델링하였다. 실험결과, 제안된 방법이 80% 이상의 정확도를 보였다.
본 논문은 영상내 객체정보의 정확한 복원을 위하여, 연속된 2차원 영상으로부터 특정 객체의 특징점을 추출하고, 특징점의 위치 데이터들로부터 원형의 3차원 모양 및 모션 정보를 복원하는 알고리즘과 결과를 제시하였다. 2차원 영상의 특징점 검출을 위해서는 물체와 배경이 명확히 구별되는 실험영상 환경에서 색상변환을 통한 자동 추출 방법을 사용하였다. 추출된 2차원 객체의 특징점들로부터 3차원 모앙, 움직임 정보를 복원하기 위하여 스테레오 카메라와 준원근 카메라 모델을 적용하고 SVD(SinEuiar Value Decomposition)에 의한 인수분해연산을 수행하였다. 준원근 카메라 모델의 근본적인 문제인 깊이정보의 복원 에러가, 스테리오 영상 분석에 의해 최소화 되었다. 본 논문에서 제시된 방법들의 성능을 객관적으로 평가하기 위하여 크기와 위치가 알려진 3차원 물체에 대해 실험을 행하였으며, 영상의 21개 특징점 위치와 공간상에서의 3개 방향으로의 움직임 각도를 연산에 의해 복원한 후 원형의 데이터와 비교하여 본 알고리즘의 정확성을 증명하였다.
IKONOS-2, QuickBird, KOMPSAT-2와 같은 고해상도 위성영상은 높은 공간해상도의 흑백영상과 멀티스펙트럴 영상을 동시에 제공하고 있다. 영상융합은 서로 다른 공간, 분광해상도를 가지는 영상을 이용하여 두 개의 장점을 모두 가지는 영상으로 재구성하는 것을 의미하며 위성영상을 영상의 시각화, 개체 추출 등에 더욱 효과적으로 사용할 수 있도록 한다는 점에서 중요한 연구분야이다. 이를 위해 많은 영상융합 알고리즘이 제안되었지만, 대부분 의 알고리즘들은 융합 후에 원 멀티스펙트럴 영상의 분광정보를 효과적으로 보존하지 못하는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 수정된 영상 유도 기법을 통하여 융합영상의 분광왜곡량을 줄이는 알고리즘을 제안하였다. 원 멀티스펙트럴 영상과 해상도를 낮춘 융합영상과의 비교 분석을 통하여 융합영상의 분광 정보 왜곡량을 보정하도록 유도기법을 조정하였다. QuickBird 영상에 적용한 결과, 다양한 융합영상들이 본 알고리즘을 적용할 경우에 분광왜곡량이 줄어드는 것을 확인할 수 있었다.
초고속의 유무선 인터넷은 다양한 형태의 미디어 데이터를 손쉽게 획득할 수 있는 유용한 창구이다. 이에 반해, 일반인들이 개인 정보가 노출된 대상 객체를 포함하고 있는 미디어 데이터까지도 인터넷을 통해 용이하게 획득할 수 있으므로 사회적으로 문제가 되고 있다. 본 논문에서는 입력되는 여러 가지 종류의 영상으로부터 개인 정보가 노출된 대상 객체를 학습 알고리즘을 이용해 강인하게 검출하고, 검출된 대상 객체 영역을 효과적으로 블로킹하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 뉴럴 네크워크 기반의 학습 알고리즘을 사용해 영상으로부터 개인 정보를 포함하고 있는 대상 객체만을 검출한다. 그런 다음, 격자형 모자이크를 생성해 이전 단계에서 검출된 대상 객체 영역 위에 오버랩함으로써 개인 정보를 포함하고 있는 객체 영역을 효과적으로 블로킹한다. 실험 결과에서는 제안된 알고리즘이 입력되는 다양한 영상으로부터 개인 정보가 노출된 대상 영역을 강인하게 검출하고, 검출된 영역을 모자이크 처리를 통해 효과적으로 블로킹한다는 것을 보여준다. 본 논문에서 제시된 객체 블로킹 방법은 객체 보안, 물체 추적, 영상 블로킹 등과 같은 컴퓨터 비전과 관련된 여러 응용 분야에서 유용하게 활용될 것으로 예상된다.
온라인 소셜 네트워크는 정보전파의 용이성 및 파급 영향력이 높지만 이를 악의적으로 활용하기 위한 스패머들이 다수 활동 중이다. 이러한 스패머를 식별하기 위한 스팸 탐지기법 연구가 다양한 분야에서 이루어지고 있지만 스패머들 또한 스팸 내용이나 스팸링크, 활동 주기 등의 특성을 변경하여 탐지를 피하고 있다. 하지만 다른 특성들과 달리 온라인 소셜 네트워크의 고유 네트워크 특성인 링크 특성은 쉽게 변화시키는 어렵다. 따라서 본 논문에서는 이러한 네트워크의 구조적인 특성을 활용하여 스패머를 일반사용자와 구분하는 방법을 제시한다. 즉 일반사용자 노드가 주변 노드와 비슷한 네트워크 특성을 갖는 점에 주목하여 인접 노드를 활용한 재귀적인 구조적 특성을 생성하여 활용함으로써 스패머의 식별확률을 높이고 있다. 이를 검증하기 위한 실험은 트위터의 실제 데이터셋을 Weka 프로그램에 탑재된 랜덤포레스트 알고리즘을 활용하여 측정하였으며, 재귀적인 특성을 활용하지 않는 방법과 기존 제안 알고리즘에 비해 탐지율이 0.82에서 0.90으로 향상됨으로써 제안하는 방법이 스패머를 탐지하는데 효과적임을 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.