Extraction of Worker Behavior at Manufacturing Site using Mask R-CNN and Dense-Net

Mask R-CNN과 Dense-Net을 이용한 제조 현장에서의 작업자 행동 추출

  • Published : 2022.05.26

Abstract

This paper reports a technique that automatically extracts object shapes through Dense-Net, and subsequently, detects the objects using Mask R-CNN in a manufacturing site, in which workers and objects are mixed. It is based on the customized factory dataset by targeting workers, machines, tools, control boxes, and products as the objects. Mask R-CNN supports multi-object recognition as a well-known object recognition method, while Dense-Net effectively extracts a feature from multiple and overlapping objects. After immediate implementation using the two technologies, the object is naturally extracted from a still image of the manufacturing site to describe image. Afterwards, the result is planned to be used to detect workers' abnormal behavior by adding a label on the objects.

본 논문은 작업자와 객체들이 서로 혼재되어 있는 제조 현장에서 Mask R-CNN을 이용해 객체들을 탐지한 후 이를 Dense-Net을 통해 객체 형상을 자동으로 추출하는 기술을 담고 있다. 이는 맞춤형 공장 데이터 세트를 기반으로 하며, 대상이 되는 객체는 작업자, 기계, 도구, 컨트롤 박스 및 제품들이다. Mask R-CNN은 이미 잘 알려진 객체 인식 방식으로서 다중 객체 인식을 지원하며, Dense-Net은 중첩된 객체들로 부터 개별 객체를 추출하는 데 탁월한 효과를 보여준다. 이러한 두 가지 기술을 이용한 기초구현 결과 제조 현장 모습에서 객체들을 정상적으로 추출해 이미지를 설명할 수 있으며, 향후 객체에 대한 레이블링과 객체 간의 상호 관계를 추가해 작업자의 이상 행동을 감지하는 용도로 활용할 계획이다.

Keywords

Acknowledgement

This work was supported by the Manufacturing Process Innovation Simulation Center Establishment Project funded by Ministry of the Trade, Industry & Energy(MOTIE, Korea).