• Title/Summary/Keyword: external magnetic field

Search Result 449, Processing Time 0.026 seconds

A Study on the Sensing Function of Amorphous Magnetostrictive Wire (아몰퍼스 자왜 와이어의 센싱기능에 관한 연구)

  • 조남희;신용진;서강수;임재근;문현욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.89-92
    • /
    • 1996
  • In this paper, we mention the study on the sensing function of amorphous magneto- striction wire with about 125${\mu}{\textrm}{m}$$\Phi$ in diameter. The wire in fabricated by using injection and quenching method under the high speed rotating water flow. The wire\`s compotion is (Fe$_{75}$ $Co_{25}$)$_{77}$Si$_{8}$B$_{15}$ , and generates sharp Matteucci voltage by large Barkhausen jump effect even the weak magnetic field. In this study, we don\`t use pick-up coil. Instead, we apply external magnetic field of 3.6Oe in the direction orthogonal to the wire. Then, we detect Matteucci voltage of 1.lmV to both side of 20cm amorphous-wire. Thus, we find that the fabricated wire has the function necessary as the high sensitive sensor material.l.al.l.

  • PDF

The Influence of Transverse Magnetic Field for Shortening DC Arc Time (직류 아크 소호 시간을 단축시키는 직교자계의 영향)

  • Lee, Eun-Woong;Cho, Hyun-Kil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.146-154
    • /
    • 2006
  • We derived a theory of increasing electromagnetic force which acts on arc column for reducing arcing time between electric contacts. A simulation method of arc velocity is presented by calculating blowout force using 3D FEM and drag force acting on arc column. This paper proposes 3 types arc extinguish chamber of different flux path and presents the specific electromagnetic force and arc velocity of each model by the analysis. The result of analysis and experimental proposes the prediction method of arc time when all conditions are same except external magnetic field.

45 degree Actuation Micromirror Array for Holographic Memory Application (홀로그램 메모리 응용을 위한 45도 구동 마이크로 미러 어레이)

  • Jang, Yun-Ho;Kim, Yong-Kweon;Kim, Ji-Deog
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2260-2262
    • /
    • 2000
  • In this paper, micromirror which can rotate 45 degree is designed, analyzed and fabricated. The micromirror is parallel to the substrate initially. When external magnetic field is applied, a micromirror can rotate to align its easy axis to the field. The size of micromirror array is $10{\times}10$. The mirror plate and spring is made of aluminium, and nickel is used as soft magnetic material. To obtain 45 degree angular deflection, dimension ratio between stopper length and thickness of sacrificial layer is properly selected. By using electrostatic force, individual actuation is possible.

  • PDF

Characteristics of the Magnetization Loss in Stacked YBCO Coated Conductors for Large Current Application (대전류 통전을 위한 YBCO CC 적층선재의 자화손실 특성)

  • Lee, Ji-Kwang;Lim, Hyung-Woo;Cha, Guee-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • For large power applications, multi-stacked tape should be used because single tape is limited in flowing demanded current capacity. Besides insulation between layers is needed for safe operation because high voltages are generated in those applications. In this study, considering those situations which mentioned above, we measure the magnetization loss in several multi-stacked tape samples having the different insulation thicknesses and various packing numbers of tape by external magnetic field having various incidence angles.

Fiber-optic Mach-Zehnder Interferometer for the Detection of Small AC Magnetic Field (미소 교류 자기장 측정을 위한 Mach-Zehnder 광섬유 간섭계 자기센서 특성분석)

  • 김대연;안준태;공홍진;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.139-148
    • /
    • 1991
  • A fiber-optic magnetic sensor system for the detection of small ac magnetic field(200Hz-2 kHz) was constructed. Magnetic field sensing part was fabricated by bonding a section of optical fiber to amorphous metallic glass(2605SC) having large magnetostriction effect. And with the directional coupler, all fiber type Mach-Zehnder interferometer was constructed to measure the variation of the external magnetic field by translating it into the optical phase shift in the interferometer. The signal fading problem of the interferometer, which is due to random phase drifts originated from the environment, i.e., temperature fluctuation, vibrations, etc., was elliminated by feedback phase compensation. This allows the sensitivity to be maintained at the maximum by keeping the interferometer in quadrature phase condition. The frequency response of metallic glass was found to be nearly flat in the range of 90 Hz-2 kHz and dc bias field for the maximum ac response was 3.5 Oe. The interferometer output showed good linearity over the range $\pm$0.5 Oe. For 1 kHz ac magnetic field the scale factor S and the minimum detectable magnetic field were measured to be 8.0 rad/Oe and $3X10^{-6} Oe/\sqrt{Hz}$at 1 Hz detection bandwidth respectively.

  • PDF

Characteristics of Coaxial Typed Magnetic Sensor Using Amorphous Wire (자성와이어를 이용한 동축케이블형 자계센서의 특성)

  • Kim, Y.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.55-59
    • /
    • 2007
  • Co-based amorphous magnetic wire with a diameter of $125{\mu}m$ and a length of 40 mm was used as an inner conductor of a coaxial cable to construct a magnetic sensor. Sensor characteristics was measured up to 3 GHz with applied up to 60 Oe by using network analyzer. Frequency dependence of impedance for this sensor was very close to the impedance resonant pattern of transmission line and 250 MHz was obtained as a 1/4 wavelength without external magnetic field. Large impedance change was measured in the magnetic field range between 0 Oe and 1 Oe, which was influenced by permeability change of magnetic amorphous wire. Because ${\Delta}Z/{\Delta}H$ value of $300{\Omega}/Oe$ was obtained at 0.1 Oe, this coaxial cable with amorphous wire can be useful as a magnetic sensor.

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

Estimation of critical current density of a YBCO coated conductor from a measurement of magnetization loss (자화손실 측정값으로부터 추정한 YBCO CC의 임계전류밀도 평가)

  • Lee, S.;Park, S.H.;Kim, W.S.;Lee, J.K.;Choi, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.16-20
    • /
    • 2010
  • For large scale power applications of HTS conductor, it is getting more important to have a stacked HTS coated conductor with low loss and large current capacity. But it was not easy to measure some electric properties. Stabilizer free YBCO CC for striated/ stacked conductors is easily burned out during the measurement of the critical current density because it has no stabilizer and it is difficult to set-up the current lead and voltage taps because it has many pieces of YBCO CC in a conductor. Instead of direct measuring the critical current of a stacked HTS coated conductor, indirect estimation from measuring a magnetization loss of HTS coated conductor could be useful for practical estimation of the critical current. The magnetization loss of a superconductor is supposed to be affected by a full penetrating magnetic field, and it tends to show an inflection point at the full penetrating magnetic field when we generate the graph of magnetization loss vs. external magnetic field. The full penetrating magnetic field depends on the shape of the conductor and its critical current density, so we can estimate the effective critical current density from measuring the magnetization loss. In this paper, to prove the effectiveness of this indirect estimation of the critical current, we prepared several different kinds of YBCO CC(coated conductor) including a stacked conductor short samples and measured the magnetization losses and the critical currents of each sample by using linked pick up coils and direct voltage measurement with transport current respectively.

Atomic Coherence Spectroscopy in the Paraffin Coated Rb Atom Vapor Cell (파라핀 코팅된 Rb원자 증기 셀에서 원자결맞음 분광)

  • Lee, Hyun-Joon;Yu, Ye-Jin;Bae, In-Ho;Moon, Han-Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.334-340
    • /
    • 2008
  • We investigated the electromagnetically induced transparency (EIT) and the Hanle spectrum in a paraffin coated Rb vapor cell. The EIT spectrum was observed in the $F_g=2$, $3{\rightarrow}F_e=3$ transition of the $^{85}Rb$ $D_1$-line by using two independent external cavity diode lasers, and the Hanle spectrum was observed by using one external cavity diode laser in the $\Lambda$-type scheme between the Zeeman sublevels of the $F_g=2{\rightarrow}F_e=1$ transition of the $^{87}Rb$ $D_1$-line. In the Hanle spectrum, we could observe the dual-structured spectrum in the paraffin coated vapor cell. We investigated the dual-structured lineshape by applying an external magnetic field, and varying the direction of the magnetic field. The narrow linewidth of dual-structured EIT was measured to be approximately 200 Hz.

Magneto-inductive Wave in Periodic Chain of Ferrite Cores and Chip Capacitors (페라이트 코어와 칩캐패시터의 주기적 연결구조에서 발생하는 자기유도파)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2015
  • In this paper, a magneto-inductive wave generated in a chain of LC resonators fabricated with Ni-Zn ferrite cores and chip capacitors is presented. RF signal propagates to neighbor resonator one by one as a consequence of the magnetical coupling between two resonators in the device. The magnetical coupling is due to the mutual inductances along the chain of resonators. So, the signal amplitude (${\approx}$ coupling intensity) is dependent of the mutual inductance which can be adjusted by applied magnetic field. In order to demonstrate the device, some experiments have been carried out systemically. The transmission characteristics of a magneto-inductive wave could be controlled by applied external magnetic field. The device composed of 5 resonators; the center frequencies were estimated to be 32 MHz and 38 MHz with the external magnetic flux density of 75 Oe and 222 Oe, respectively. We expect that the reported results could open a promising way to a high variety of applications in one- and two-dimensional functional devices, such as transducers, delay lines, power dividers and couplers.