• Title/Summary/Keyword: exterior wood

Search Result 64, Processing Time 0.023 seconds

Flame Resistance and Durability of Compressed Structural Wood through Microwave Heat Drying Method (마이크로파 가열건조법에 의한 압축 구조용 목재의 방염 및 내구성)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.162-170
    • /
    • 2011
  • As the result of implementing a treated material test and durability test after quickly drying S.P.F. species, a type of softwood structural material, within a short period time, soaking it in liquid phosphate flame proof agent for an hour, microwave heating it, and compressing it from 3.8cm to 1cm, when setting the appropriate heating time of microwave heating at 7 minutes at 5kW, it is observed that it satisfies the target water content (4~5%). It is shown that in a water content measurement of the wood that is compressed after being softened by soaking in the flame proof agent, drying and heating at 3kW for 9 minutes, all specimens satisfied 12~14%, the appropriate water content for exterior wood. Also, it is shown that in terms of the flame performance obtained through a flame resistance treatment of the compressed wood and a treated material test, the specimen soaked in flame proof agent for 30 minutes was the most excellent, and that the performance test result of the compressed wood in all areas, such as nail withdrawal resistance, compression, bending strength, and shearing strength, were all improved in their mechanical features to twice to three times better performances.

Hygrothermal Performance Improvement Plan of Standard Model for Rural Housing and Wooden Housing (농촌주택 및 목조주택 표준모델 구조체의 습·열 환경 성능 개선 방안)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.63-71
    • /
    • 2021
  • The purpose of this study was to investigate whether the standard models for rural housing and wooden housing model have performance for hygrothermal and to propose a way of improvement relevant to hygrothermal performance for those models. All of the models to be analyzed were found to have some parts that were absent of stability in terms of performance for hygrothermal. In the process of analyzing the causes and proposing improvement measures, the following conclusions were derived. Fist, The exterior surface of the structure should be composed of a structure with good moisture permeability, and for the interior surface, a variable vapor retarder paper should be applied in consideration of the reverse condensation phenomenon in summer. Second, in terms of performance for hygrothermal, applications of external insulation plaster finish to the exterior wall or of ventilation method using a rafter vent on the roof should be avoided. Third, a rain screen method with a ventilation layer should be applied to the exterior wall, and a method of constructing ventilation layer separated from the insulation layer with a vapor retarder paper should be applied to the roof. Fourth, the application of insulation materials having capillary action, such as wood fiber insulation board or cellulose insulation board, contributes to more stable performance for hygrothermal.

Usage Status and Environmental Sustainability Guidelines for Building Exterior Materials (건축물 외장재의 사용 현황과 친환경 성능)

  • Park, Jong-Soo;Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5861-5869
    • /
    • 2014
  • Existing studies of building exterior materials have focused on the colors or textures of cladding, and in terms of a design planning approach, have focused on the use of the environment and equipment and fire safety topics from an engineering perspective. As a result, little research has been done on performance guidelines for exterior materials, specifically according to the building type. Research into eco-friendly cladding materials is also in the rudimentary stage in a practical sense. In this study, the use of exterior materials over the last ten years in domestic construction was analyzed. The usage status of building exterior materials was evaluated quantitatively by frequency analysis, and its environmental performance is proposed through complex (qualitative + quantitative) analysis. The average value of the exterior material type number used for all analyzed buildings was 2.59. Glass, metal, stone, resin, cement, wood, and clay were used in that order with regard to the usage status. The analysis found that five of the materials satisfied the high efficiency and eco-friendly grading in terms of the four characteristics of an eco-friendly exterior. A list of eight eco-friendly elements was also proposed. The eco-friendly elements and characteristics of the exterior materials were derived to provide basic guidelines for domestic construction companies and design offices.

Estimation of Moisture Diffusivity during Absorption by Boltzmann Transformation Method (Boltzmann법에 의한 목재 흡수시 확산계수 추정)

  • Kang, Wook;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Although the exterior wood such as column may frequently contact with liquid water, little work has been found to measure liquid water absorption in wood. To investigate the moisture diffusivity of wood in the longitudinal direction including bound water and free water movement, liquid water absorption test was conducted at the room temperature. The order of magnitude for absorption coefficient and diffusivity was Japanese elm, horn beam, hemlock, spruce, radiata pine, and painted maple. The Boltzmann transformation method was used to determine the diffusivity from measured moisture content distributions in the absorption test. The shape of the curve representing the dependence of diffusivity with moisture content was similar in test samples. The diffusivity decreased with increasing moisture content until around the fiber saturation point and then increased at the nonhygroscopic region, which ranged from $10^{-10}$ to $10^{-7}m^2/s$.

A Study on the Possibility of Model Development from Traditional Han-ok to Urban Clustering Housing Model in Korean Context (전통한옥의 도시집합주거로 발전 가능성 연구)

  • Shon, Seung-Kwang
    • Journal of the Korean housing association
    • /
    • v.19 no.3
    • /
    • pp.71-81
    • /
    • 2008
  • A traditional Korean housing is a typical type which is contained life style, spatial organization and scape element of people who lived in Korea. In the hanok, people want to be live not only in human environment and traditional culture, but also modem urban housing as a high density. This article deals as follows: First, Hanok as urban housing would be composed in a housing lot, linear type layout, devide building, and cluster type. Second, Housing unit and configuration of Multi family housing can be used single story, second story, second story + single story, multi story and Hanok roofing. Thirds, structure of the building are traditional wooden, combined one of steel and wood or concrete and wood, and the building system in exterior and interior can be seperated into another system. Forth, Image of multi story Hanok A last, consistency of Hanok is not a repeat of an origin but application and creative aptitude of the origin, and multi family housing application of Hanok can be a trial creative.

Vapor Sorption Property of Charcoal-based Loess Composites (숯과 황토 복합소재의 흡착성능)

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • The purpose of this study was to evaluate the relationships between the mixing ratio and water vapor sorption property of charcoal-based loess composites for furniture & building materials with environmental friendly. Charcoal-based loess composite can be easily made by blending method with water. But the composites had much brittle fracture pattern with the increase of charcoal content. That is due to the lack of loess that takes linkage role of composites. In water vapor sorption properties, adsorption ability of charcoal was about six times higher than that of loess. Therefore, vapor sorption ability was maximum at the mixture ratio of charcoal 80% and loess 20%. It is considered that wood charcoal based inorganic composite materials can be used for various purposes as a building interior & exterior and furniture members.

  • PDF

Evaluation of Natural Decay Durability on Valuable Domestic Softwoods by European Standard Test Method (유럽규격 시험방법에 의한 국산 유용 침엽수재의 천연 내후성 평가)

  • Lee, Jong-Shin;Kim, Young-Sook;Kim, Gyu-Hyeok;Kim, Kyung-Tae;Kim, Yoon-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.3
    • /
    • pp.222-228
    • /
    • 2015
  • To evaluate the natural decay durability of valuable domestic softwoods which are used for preservative treatment in our country, we carried out decay test by European standard method. Of all test wood species, Japanese larch (Larix leptolepis) showed slightly high natural decay durability compared to other 4 wood species, Japanese red pine (Pinus densiflora), pitch pine (Pinus rigida), Japanese cedar (Cryptomeria japonica), and scots pine (Pinus sylvestris). However, all of evaluated domestic softwood species in this study caused high weight losses over about 30% in heartwood by test fungus, Poria placenta. We can hardly expect a good natural decay durability from these softwood species. According to the classification of the natural durability of European standard (EN 350-1), they are classified into "Not durable" or "Slightly durable". Therefore, if using these softwoods as exterior materials, we must do preservative treatment to ensure durability.

Physical Properties of Hybrid Poplar Flakeboard Bonded with Alkaline Phenolic Soy Adhesives

  • Yang, In;Kuo, Monlin;Myers, Deland J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.66-75
    • /
    • 2005
  • Soybean-based adhesives have recently been reconsidered as alternatives to petroleum-based adhesives due to the uncertainty of availability of petrochemical products and the increased demand for wood adhesives. This study was conducted to investigate the adhesive properties of alkaline phenolic soy (APS) resin for hybrid poplar flakeboard. The APS resin was formulated by crosslinking an alkaline soy flour hydrolyzate with lab-prepared PF resin in the soy hydrolyzate to PF resin weight ratios of 70/30, 60/40, and 50/50. The APS resins were used to fabricate homogeneous hybrid poplar flakeboards with different resin solid levels (5%, 7%, and 9%), press temperatures (175 and $200^{\circ}C$), and press times of 8 and 10 minutes. The IB, wet MOR, and dimensional stability properties of board improved with increasing press time, press temperature, and PF level in APS resins. Increasing press time can be used to offset poor IB strength associated with a 9% resin solid level and the excessive moisture content in the mat. The following conditions were concluded to meet the requirements of the CSA standard for exterior-grade flakeboard: a 50% PF level, a 5% resin content, a $200^{\circ}C$ press temperature, and an 8 minute press time.

Evaluation in Physiomechanical Characteristics of Carbonized Oriented Strand Board by Different Carbonizing Conditions

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Environmental issues about indoor air quality have been increased and focused on volatile organic compounds (VOCs) caused cancer, asthma, and skin disease. Reducing VOCs has been attempted in many different methods such as using environmentally friendly materials and air cleaner or purifier. Charcoal is well known material for absorbing VOCs. Therefore, carbonized board from medium density fiberboard has been developed. We assumed that the source of carbonized boards can be any type of wood-based panels. In this study, carbonized boards were manufactured from oriented strand board (OSB) at 400, 600, 800, and $1000^{\circ}C$. Each carbonized OSB (c-OSB) was evaluated and determined physiomechanical characteristics such as exterior defects, dimensional shrinkage, modulus of elasticity, and bending strength. No external defects were observed on c-OSBs at all carbonizing conditions. As carbonizing temperature increased, less porosity between carbonized wood fibers was observed by SEM analysis. The higher rate of dimensional shrinkage was observed on c-OSB at $1000^{\circ}C$ (66%) than c-OSB at 400, 600, and $800^{\circ}C$ (47%, 58%, and 63%, respectively). The densities of c-OSBs were lower than original OSB, but there was no significant different among the c-OSBs. The bending strength of c-OSB increased 1.58 MPa (c-OSB at $400^{\circ}C$) to 8.03 MPa (c-OSB at $1000^{\circ}C$) as carbonization temperature increased. Carbonization temperature above $800^{\circ}C$ yielded higher bonding strength than that of gypsum board (4.6 MPa). In conclusion, c-OSB may be used in sealing and wall for decorating purpose without additional artwork compare to c-MDF which has smooth surface.

The Heavy Metals Recovery from Carbonized CCA Treated Wood (CCA방부목재의 탄화가 중금속 회수에 미치는 영향)

  • Son, Dong-won;Cheon, Seon-Hae;Lee, Myung Jae;Lee, Dong-heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.95-100
    • /
    • 2005
  • The using amount of preservative-treated wood equipments has been increased. Specially, chromate copper arsenate (CCA) has been widely used to exterior wood. We are faced to the disposal problem after service period of CCA treated wood due to its toxic heavy metals. For the disposal of end-used treated wood, land-filling and incinerating methods are mainly applied. The essential problem of incinerating is an arsenic release into atmosphere. Low pyrolysis is suggested as the methods of protecting arsenic release during incineration. The heavy metals were recovered after combustion of the treated wood at the low temperature which arsenic can not released. The recovery amounts of effectiveness compounds was determined in various solvents (citric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid) and different temperature (300, 400, $500^{\circ}C$). The higher temperature was applied, the more copper was recovered. The chromium was difficult to be recovered on the carbonized CCA treated wood at 0.5% acid concentration. The recovery mass of arsenic decreased on the higher combustion treated wood. The recovery of chromium was difficult due to the chemical change of the chromium arsenate during pyrolysis.