• Title/Summary/Keyword: extensions

Search Result 843, Processing Time 0.019 seconds

INSERTION PROPERTY OF NONZERO POWERS AT ZERO PRODUCTS

  • Kim, Dong Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.371-378
    • /
    • 2018
  • This article concerns a ring property which is seated between IFP and IPFP rings. We study the insertion property of nonzero powers at zero products, introducing the concept of strongly IPFP ring. The structure of strongly IPFP rings is investigated in relation with nearly seated ring properties and ring extensions.

INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS

  • Sach, Pham-Huu;Kim, Do-Sang;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.241-258
    • /
    • 2006
  • This paper gives conditions under which necessary optimality conditions in a locally Lipschitz program can be expressed as the invexity of the active constraint functions or the type I invexity of the objective function and the constraint functions on the feasible set of the program. The results are nonsmooth extensions of those of Hanson and Mond obtained earlier in differentiable case.

INFINITE FLOCKS OF QUADRATIC CONES-II GENERALIZED FISHER FLOCKS

  • Jha, Vikram;Johnson, Norman L.
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.653-664
    • /
    • 2002
  • This article discusses a new representation of the generalized Fisher flocks and shows that there is a unique flock for each full field K of odd or zero characteristic that has a full field quadratic extension. It is also shown that partial flock extensions of 'critical linear subflocks'are completely determined.

ON STRONG LAWS OF LARGE NUMBERS FOR 2-DIMENSIONAL POSITIVELY DEPENDENT RANDOM VARIABLES

  • Kim, Tae-Sung;Beak, Hoh-Yoo;Seo, Hye-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.709-718
    • /
    • 1998
  • In this paper we obtain strong laws of large numbers for 2-dimensional arrays of random variables which are either pairwise positive quadrant dependent or associated. Our results imply extensions of Etemadi`s strong laws of large numbers for nonnegative random variables to the 2-dimensional case.

  • PDF

STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES

  • Cai, Guang-Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.771-778
    • /
    • 2006
  • Strong laws are established for linear statistics that are weighted sums of a random sample. We show extensions of the Marcinkiewicz-Zygmund strong laws under certain moment conditions on both the weights and the distribution. The result obtained extends and sharpens the result of Sung ([12]).

ON UNIVERSAL COVERINGS OF LIE TORI

  • Khalili, Valiollah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1199-1211
    • /
    • 2012
  • In this paper we give an introduction to the theory of universal central extensions of perfect Lie algebras. In particular, we will provide a model for the universal coverings of Lie tori and we show that automorphisms and derivations lift to the universal coverings. We also prove that the universal covering of a Lie ${\Lambda}$-torus of type ${\Delta}$ is again a Lie ${\Lambda}$-torus of type ${\Delta}$.

REFLEXIVE PROPERTY ON IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1957-1972
    • /
    • 2013
  • The reflexive property for ideals was introduced by Mason and has important roles in noncommutative ring theory. In this note we study the structure of idempotents satisfying the reflexive property and introduce reflexive-idempotents-property (simply, RIP) as a generalization. It is proved that the RIP can go up to polynomial rings, power series rings, and Dorroh extensions. The structure of non-Abelian RIP rings of minimal order (with or without identity) is completely investigated.

QUASICONFORMAL EXTENSIONS OF STARLIKE HARMONIC MAPPINGS IN THE UNIT DISC

  • Hamada, Hidetaka;Honda, Tatsuhiro;Shon, Kwang Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1377-1387
    • /
    • 2013
  • Let $f$ be a harmonic mapping on the unit disc ${\Delta}$ in $\mathbb{C}$. We give some condition for $f$ to be a quasiconformal homeomorphism on ${\Delta}$ and to have a quasiconformal extension to the whole plane $\bar{\mathbb{C}}$. We also obtain quasiconformal extension results for starlike harmonic mappings of order ${\alpha}{\in}(0,1)$.