DOI QR코드

DOI QR Code

CROSSED MODULES AND STRICT GR-CATEGORIES

  • Received : 2012.09.24
  • Published : 2014.01.31

Abstract

In this paper we state some applications of Gr-category theory to the classification problem of crossed modules and to that of group extensions of the type of a crossed module.

Keywords

References

  1. J. C. Baez and A. D. Lauda, Higher dimensional algebra. V. 2-groups, Theory Appl. Categ. 12 (2004), 423-491.
  2. R. Brown, P. J. Higgins, and R. Sivera, Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts Math. Vol. 15, 703 pages, August 2011.
  3. R. Brown and O. Mucuk, Covering groups of nonconnected topological groups revisited, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 97-110. https://doi.org/10.1017/S0305004100071942
  4. R. Brown and C. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad. V. Wet. 79 (1976), no. 4, 296-302.
  5. R. Brown and C. D. Wensley, Computation and homotopical applications of induced crossed modules, J. Symbolic Comput. 35 (2003), no. 1, 59-72. https://doi.org/10.1016/S0747-7171(02)00103-7
  6. M. Calvo, A. M. Cegarra, and N. T. Quang, Higher cohomologies of modules, Algebr. Geom. Topol. 12 (2012), no. 1, 343-413. https://doi.org/10.2140/agt.2012.12.343
  7. A. M. Cegarra and A. R. Garzon, Some algebraic applications of graded categorical group theory, Theory Appl. Categ. 11 (2003), no. 10, 215-251.
  8. P. Dedecker, Les foncteurs $Ext_{\Pi}$, $H_{\Pi}^2$ et $H_{\Pi}^2$ non abeliens, C. R. Acad. Sci. Paris 258 (1964), 4891-4894.
  9. A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78. https://doi.org/10.1006/aima.1993.1055
  10. S. Mac Lane, Homology, Springer-Verlag, 1963.
  11. B. Noohi, Notes on 2-groupoids, 2-groups and crossed modules, Homology, Homotopy Appl. 9 (2007), no. 1, 75-106. https://doi.org/10.4310/HHA.2007.v9.n1.a3
  12. N. T. Quang, N. T. Thuy, and P. T. Cuc, Monoidal functors between (braided) GR- categories and their applications, East-West J. Math. 13 (2011), no. 2, 163-186.
  13. H. X. Sinh, Gr-categories, These de doctorat, Universite Paris VII, 1975.

Cited by

  1. EQUIVARIANT CROSSED MODULES AND COHOMOLOGY OF GROUPS WITH OPERATORS vol.52, pp.4, 2015, https://doi.org/10.4134/BKMS.2015.52.4.1077