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ON STRONG LAWS OF LARGE NUMBERS FOR
2-DIMENSIONAL POSITIVELY DEPENDENT
RANDOM VARIABLES

TAE-SUNG KiMm, HOH-Y00 BEAK AND HYE-YOUNG SEO

ABSTRACT. In this paper we obtain strong laws of large numbers
for 2-dimensional arrays of random variables which are either pair-
wise positive quadrant dependent or associated. QOur results imply
extensions of Etemadi’s strong laws of large numbers for nonnegative
random variables to the 2-dimensional case.

1. Introduction

In the last years there has been growing interest in concepts of positive
dependence for families of random variables (see for example, Blocks and
Ting (1981), Karlin and Rinott (1980), Shaked (1982) and the references
therein). Such concepts are of considerable use in deriving inequalities
in probability and statistics. Lehmann (1966) introduced the notion of
positive quadrant dependence: A sequence {X; : ¢ > 1} of random
variables is said to be pairwise positive quadrant dependent (pairwise
PQD,) if for any real r;,r; and i # j P{X; > r;, X; > r;} > P{X; >
ri}P{X; > r;}. A much stronger concept than PQD was considered
by Esary, Proschan, and Walkup (1967): A sequence {X; : ¢ > 1}
of random variables is said to be associated if for any finite collection
{Xja),* + -+ Xjm} and any real coordinatewise nondecreasing functions
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£y gon R, Cou(f (X, Xsm) ) » 9( X -+ Xijm) ) ) 2 0, when-
ever the covariance is defined. Let us remark that associated random
variables are always pairwise PQ)D and that (pairwise) independent ran-
dom variables are (pairwise PQ D) associated. For a sequence of random
variables the strong law of large numbers are investigated extensively in
the literature; Etemadi (1981) derived the strong law of large numbers
for a sequence of pairwise independent, identically distributed random
variables and extended it to the d-dimensional array of random vari-
ables. Etemadi (1983 a) studied the strong law of large numbers for &
sequence of nonnegative random variables which are pairwise negatively
dependent and Csérg6 , Tandori, and Totik (1983) investigated the strong
laws of large numbers for sums of pairwise independent random variables,
Birkel (1989) also studied the following strong laws of large numbers for
sequences of random variables which are either pairwise positively quad-
rant dependent or associated:

THEOREM 1.1. (Birkel, 1989) Let {X; : j > 1} be a sequence o
pairwise PQD random variables with finite variance. Assume

© ]

(1) Z Zj—2 Cm)(XhXj) < 00,
j=1 =1

(ii) sup E|X; — EX;| < o0.
j=1

Then, as n — oo, n” (S, — ES,) — 0 a. s.

THEOREM 1.2. (Birkel, 1989) Let {X; : j > 1} be a sequence oi
associated random variables with finite variance. Assume that (i) o
Theorem 1.1 holds. Then, as n — oo, we have n=1(S, — ES,) — 0 a. s.

Let us remark that if the random variables are associated assump-
tion (ii) in Theorem 1.1 is dropped. In this paper we extend Birkel’s
(1989) strong laws of large numbers for sums of random variables which
are either pairwise PQD or associated (Theorems 1.1 and 1.2) to the
2-dimensional case. In Section 2 we obtain a strong law of large numbers
for positively dependent nonnegative random variables by applying The-
orem 1 in Etemadi (1983 b), a striking result without the independence
hypothesis, and extend this result to the 2-dimensional case. In Section
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3 we derive strong laws of large numbers for 2-dimensional arrays of ran-
dom variables which are either pairwise positive quadrant dependent or
associated.

Throughout this work {X; : j > 1} is a 2-dimensional array of ran-
dom variables defined on a probability space (2, F, P), and let S, =
Dicicn Xi = 2ier 2ogimt X(hgs for n= (n1,n9) and j = (j1, jo). We
shall use the following notations and conventions:

(i) [a] will denote the integer part of the real number a, i.e., the greatest
integer smaller than or equal to q,

(ii) 1= (11 1)7 |l| = j1 X jp for .Z = (jl;j2)’

(iii) n = (ny,np) — oo means that n; X ng — oo,

(iv) X* = max(0, X) and X~ = max(0, —X).

2. Preliminaries

From Theorem 1 of Etemadi (1983b) by putting w, = 1 forn > 1
we obtain the following lemma for a sequence of positively dependent
nonnegative random variables.

LEMMA 2.1. (Etemadi, 1983b) Let {X; : j > 1} be a sequence
of positively dependent nonnegative random variables with finite second
moments. Assume

(1) sup EX; < o0,

(i) Y

Then as n — oo (S, — ES,)/n — 0a.s.

j
Cov(X;, X;)/ 7 < oo.

i=1

Following theorem will play the key role to derive the main results.

THEOREM 2.1. Let {X; : j > 1} be a 2-dimensional array of
positively dependent nonnegative random variables with finite second
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moments. Assume

(i) sup EX; < oo,
=1

() > D Cov(X;, X;)/i < o,

izl |jzli>1
where |j| = j1 X jo. Then asn — 00, (S, — ESy)/|n| — 0 a. s.

Proof. Let a > 1, b > 1 and ng = ([a"], [b*]) for k = (k1,k2). By
Chebyshev’s inequality for every ¢ > 0

> P{|Sn, — ESn| > elngl}

k1

<by Y Var(Sy,) / Ingl?

k>1

<bh Y, D D Cou(XiX;) / Il

k>1 1<j<n; 1<i<ng

(2.1) <b, Y D Y Cou(Xy, X;)/Inkf?

k21 1<j<ng 1<isng

:b22|k|2 Z Z Cou( Xy, X;) /I’

k>1 1<j<ng 1<)i<j)
1
“n Y Y caX) ¥ g
21 1<lill) {Emp23} %

<bs Y Y Cou(Xy, X;) /i) < oo

Jz1 1<jil<lg]

The last inequality of (2.1) follows from the following: First note that

(2.2) Z => InkP

{Ei%zz} k2ko
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where kg = min{k : n; > j}. Then the right hand side of (2.2) yields

1
Z] k|2— ZWE{ - sza%lgﬁkz

k>ko k>ko o>kl ki >k}
D
a2kob2ky
< o<
Inwl* ~ ]

where ko = (ky, k) and C, D and E are some positive constants. Thus
by the Borel-Cantelli lemma it follows from (2.1) that

(2.3) (S — ESy,) / Ing| — 0 a. s.
Now given k = (ki, k2), positive integers ki, ky for ny < n < ngyy we
have
(2.4) Sy — ES, < Sngy = BSny, | g + ESp, — ESn
In| |~ 1] || |

by the monoton1c1ty of S,. Let @ > 1, b > 1 and for each ny = (ny,, ny,)
set n, = [aP],ny, = [b%2]. Then from (i), (2.3) and (2.4) one can easily
verify that

lim sup (|Sy — ESy| / |nl) < sup EXj(ab— 1),
21T
for every a > 1 and b > 1 which concludes the proof since both a and b

may be arbitrary close to 1.

LEMMA 2.2. Let X be a random variable with finite second moment.
Define

X" = max(X,0) and X~ = max(—X, 0).
Then
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Proof. Note that for all nondecreasing (nonincreasing) functions f and
g,
(2.5) Cou(f(X),9(X)) =0,

whenever the covariance is defined. Applying (2.5) with f(z) = z —
zt, g(z) =z, and f(z) =2 —z*, g(z) = z, we obtain

(26) Var(X") <Cou(X,X"), Cov(X,X*) < Var(X).
Thus (2.6) proves (i). Since X~ = (—X)*, (ii) follows from (i). O
LEMMA 2.3. (Birkel, 1989) Let X; and X; be PQD. Then
() 0< Con(X},X}) < Con(Xs, X;),
(ii) 0<Cov(X], X ) < Cov(X;, Xj).
Proof. See the proof of Theorem in Birkel (1989). O

Following corollary is an extension of Corollary 1 of Etemadi (1983a)
to the 2-dimensional case.

COROLLARY 2.1. Let {X; : j > 1} be a 2-dimensional array of pair-
wise independent random variables with finite second moments. Assume

(i) s1>111) E|X; — EX;| < oo,
321

(i) ) liIVar(X;) < oo.

izl
Then asn — o0, (S, — ES,)/|n] — a. s.

Proof. Use the arguments in the proof of Corollary 1 of Etemadi
(1983a). Consider the 2-dimensional array of random variables {(X; —

EX;)* :j > 1} and its corresponding sum, say S*. According to Lemma
2.2 Var(X; — EX;)* > Var(X; — EX;) = Var(X;) for j > 1 and
Cov(X}, X;*) =0 for i #* g accc;rding to Lemma 2.3. Thus we clearly
have, as n — oo, |n|7!(S; — ES}) — 0 a. s. by using Theorem 2.1. A
similar consideration for negative part, say S:*, together with the fact
that £S; — ES;* = 0 completes the proof of Corollary 2.1. O
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3. Main results

The following theorem is the strong law of large numbers for 2-dimen-
sional pairwise PQ)D random variables.

THEOREM 3.1. Let {X; : j > 1} be a 2-dimensional array of pairwise
PQD random variables with finite variance. Assume

© > ) CouX;, X,)/Iif < oo,
Jz1 1<(i<il

(i) sup F|X; — EX;| < oo.

>l
Then, asn — oo, |n|"}(S, — ES,) — 0 a. s.
Proof. First note that (X;, X;) is PQD if and only if
Cov(f(Xy),9(X;)) 20,

for all nondecreasing (nonincreasing) functions f, g such that the covari-
ance exists (see Lemma 1 of Lehmann (1966)). Hence X; — EX;, j > 1,
are pairwise PQD and without loss of generality, we may assume that,
for j > 1, EX; = 0. Now we consider {X 7 :j > 1} and its correspond-

ing sum, say S* = Y 1<icn X;. Our assumptions (i) and (ii) together
with Theorem 2.1 and Lemma 2.3 imply that, as n — oo, [n]71(S: —
ES?) — 0 a. s. A similar consideration for the negative parts, say
S"*—— Y o1<i<n X; »and fact that ES} — ES;* = 0 complete the proof of

Theorem 3.1. a

REMARK. For the one dimensional random variables an example of
Cso6rgd, Tandori and Totik (1983) shows that even for pairwise indepen-
dent (and hence pairwise PQD) random variables condition (i) alone
does not imply the strong law of large numbers (see [1], [3]).

Newmann and Wright (1982) introduced the following maximal in-
equality for 2-dimensional associated random variables.

LEMMA 3.1. (Newman, Wright 1982) Let {X; : be a 2-

dimensional array of associated variables with EX;

” 1%,

> 1}
0, EX?
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For Ay > A\ > 0, we have

(8.1) P{max S;> X} < 31271 (ES2 /(N — M)DF[P(Se > A)JH.

R,

Proof. See the proof of Theorem 10 of Newman and Wright (1982). O

If the random variables are associated, assumption (ii) in Theorem 3.1
may be dropped and we need maximal inequality to prove the following
theorem:

THEOREM 3.2. Let {Xi 1j = 1} be a 2-dimensional array of associ-
ated random variables with finite variance. Assume

Y Y Cov(Xy, X;) /I3 < 0.

iz1 1<li<ld
Then, as n — oo, |n|™!(S, — ES,) — 0 a. s.

Proof. Since the random variables X; — EXj, j > 1 are associated by
(Py) of Esary, Proschan and Walkup (1967), without loss of generality we
may assume that, for j > 1, EX; = 0. Now use the ideas in the proofs of
Theorems 2.1 and 3.1. Then by Chebyshev’s inequality for every e > 0,

Y P{Su,—ESul / el > €}

k>1

(3.2) > cz Var(Sy,) / |ngl?

k21
>y Y CoulXy X;) /1 < oo,
izl 1<ji<ly|

where ¢ is an unimportant constant. Thus by the Borel-Cantelli lemma,
as ng — 00,

(3.3) (Sn, — ESn)/Ing| — 0 a. s.

By standard argument, it suffices to show that, as ny — oo,
-1 o -

(3.4) |72 o max 1S; = Spl = 0 a. s.

Let a > 1, b > 1 and ny = (my,,nr,) = ([a], [b]) and k = (k1, k2)
and let Xy = €|ng| and A\; = ie|ng|. Using Chebyshev’s inequality and
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applying (3.1) of Lemma 3.1 we have

(3.5)
P {|ng)™" max (8;—S,,)>e€}

g <ESNg-1

IA

3 1
327 (BlSn= $u)" / (gelnal?) (S, = 50 / Gelral?)’
clng|2Var(Sn,., — Sn,)
i Var(S,,)
Pl |V ar(S,.,)
since the X; are nonnegatively correlated. Replacing the random vari-

ables X,, by their negatives (which are also associated according to (P;)
of Esary, Proschan and Walkup (1967)) we get the analogous inequality

(3.6) P{lng|™" max —(S;—S,,)> €} <a®lclng,|*Var(S,,,,)
- n&<§Sn£$l = == 1

IAIA A

(3.5) and (3.6) imply
(3.7) P{lne™" max |S;— Sn| > €} < 20%2cngsa) ?Var(S

LSO )

N <ES<ngr

and hence

-1
S P(ni™ | max 15i= S| 2 o

k21

< 2y gl *Var(Sy, )
k<1

< 2a%b%c Z Ing)*Var(S,,.,)
k=1

< 2a2b2cz Z Cov(X;, X;5) / |J_l2
i1 1<li<lj]

< o0

according to the above consideration (3.2). Again applying the Borel-
Cantelli lemma, we obtain (3.4) which completes the proof of Theorem
3.2.
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REMARK. The problem of extending (3.1) of Lemma 3.1 [Theorem
10 (formula (39)) of Newman and Wright (1982)] to d-dimensional case
(d > 2) is presently an open question (see [9]). Therefore an extension of
(3.5) to the general dimensional associated random variables with d > 2
is also open.
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