• Title/Summary/Keyword: extended Kalman estimator

Search Result 46, Processing Time 0.022 seconds

Position Estimation of Free-Ranging AGV Systems Using the Extended Kalman Filter Technique (Extended Kalman Filter방법을 이용한 자유주행 무인 방송차의 위치 평가)

  • Lee, Sang-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.971-982
    • /
    • 1989
  • An integrating position estimation algorithm has been developed for the navigation system of a free-ranging AGV system. The navigation system focused in this research work consists of redundant wheel encoders for the relative position measurement and a vision sensor for the absolute position measurement. A maximum likelihood method and an extended Kalman filter are implemented for enhancing the performance of the position estimator. The maximum likelihood estimator processes noisy, redundant wheel encoder measurements and yields efficient estimates for the AGV motion between each sampling interval. The extended Kalman filter fuses inharmonious positional data from the deadreckoner and the vision sensor and computes the optimal position estimate. The simulation results show that the proposed position estimator solves a generalized estimation problem for locating the vehicle accurately in space.

  • PDF

A Suboptimal Estimator Design for Discrete Nonlinear Systems (이산 비선형시스템에서의 준최적추정자)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.929-936
    • /
    • 1991
  • An estimator for a discrete nonlinear system is derived in the sense of minimum mean square error. An optimal estimator for nonlinear system is very difficult to find and it will be infinite dimensional even if it is found. It has been known that the statistical linearization technique makes it possible to obtain a finite dimensional estimator. In this paper, the procedure of its derivation using the statistical linearization technique that gives an exact mean and variance information is introduced in the sense of minimum mean square error. The derived estimator cannot be clainmed to be globally optimal estimator because it uses the Gaussian assumption to the non-Gaussian distributed nonlinear output. However, the proposed filter exhibits a better performance compared to extended Kalman filter. Simulation results of a simple example present the improvement of the proposed filter in convergent property over the extended Kalman filter.

  • PDF

A Study on Localization Technique Using Extended Kalman Filter for Model-Scale Autonomous Marine Mobility (모형 스케일 자율운항 해양 이동체의 확장칼만필터 기반 측위 기법에 관한 연구)

  • Youngjun You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.98-105
    • /
    • 2024
  • Due to the low accuracy of measured data obtained from low-cost GNSS and IMU devices, it was hard to secure the required accuracy of the measured position and heading angle for autonomous navigation which was conducted by a model-scale marine mobility. In this paper, a localization technique using the Extended Kalman Filter (EKF) is proposed for coping with the issue. First of all, a position and heading angle estimator is developed using EKF with the assumption of a point mass model. Second, the measured data from GNSS and IMU, including position, heading angle, and velocity are used for the estimator. In addition, the heading angle is additionally obtained by comparing the LiDAR point cloud with map information for a temporal water tank. The newly acquired heading angle is integrated into the estimator as an additional measurement to correct the inaccuracy in the heading angle measured from the IMU. The effectiveness of the proposed approach is investigated using data acquired from preliminary tests of the model-scale autonomous marine mobility.

Structural Improvement of Extended Kalman Filter using Coordinate Transformation (좌표 변환을 이용한 확장 칼만 필터의 구조적 개선)

  • Yun, Kang-Sup;Kim, Jong-Hwa;Hwang, Chang-Sun;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.905-908
    • /
    • 1988
  • In recent, Kalman filter technique has been much used as one of technique for tracking of the moving target. But some problem are still remained to be resolved. For example, when Kalman filter technique is applied to nonlinear system, the technique is nonoptimal estimator. Therefore, extended Kalman filter is proposed to reduce modeling error for nonlinear system. In this study, an extended Kalman filter in Cartesian coordinates is described for moving target, when the radar sensor measures range, azimuth and elevation angle in polar coordinates. And an approximate gain computation algorithm is proposed. In this approach, Kalman gains are computed for three uncoupled filter and multiplied by a Jacobian transformation determined from the measured target position and orientation.

  • PDF

Design of State-estimator using Extended Kalman Filter for Magnetic Levitation System (자기부상시스템에서의 확장칼만필터를 이용한 상태추정자 설계)

  • Sung H.K.;Jung B.S.;Cho J.M.;Jang S.M.;Kim D.S.;Yu M.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1334-1336
    • /
    • 2004
  • The existing problems of the Electro-Magnetic Suspension system such as air-gap disturbance, mass variation and actuator/sensor failure are described in amore specific manner. These problem can not be solved by conventional state-feedback and output-feedback control. Extended Kalman Filter is to linearize about a trajectory that is continually updated with the state estimates resulting from the measurements. In this paper, first, the physical properties of the EMS system are described. second, Extended Kalman Filer designed as form appliable EMS system. It is shown that state estimation performance can be obtained with the use of Extended Kalman filter, and that results from simulation, stability analyze.

  • PDF

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Advanced Kalman filter - a survey (칼만필터의 최근 동향 및 발전)

  • 이장규;이연석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.464-469
    • /
    • 1987
  • The Kalman filter is an optimal linear estimator that has been an active research topic for the past three decades. The scheme has become the milestone of modern filtering, and it is applied to many areas including navigations and controls of free vehicle. The Kalman filter technique is matured. But some problems are still remained to be resolved. The prevention of divergence induced by digital implementation, nonoptimal application for nonlinear system, and application to non-Gaussian processes are some of the problems. This paper surveys the problems. The square root filtering is suggested to prevent the divergence. The extended Kalman filter is used for nonlinear systems. And, many other approaches to Kalman-like optimal estimators are also investigated.

  • PDF

Development of 3-Dimensional Pose Estimation Algorithm using Inertial Sensors for Humanoid Robot (관성 센서를 이용한 휴머노이드 로봇용 3축 자세 추정 알고리듬 개발)

  • Lee, Ah-Lam;Kim, Jung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, a small and effective attitude estimation system for a humanoid robot was developed. Four small inertial sensors were packed and used for inertial measurements(3D accelerometer and three 1D gyroscopes.) An effective 3D pose estimation algorithm for low cost DSP using an extended Kalman filter was developed and evaluated. The 3D pose estimation algorithm has a very simple structure composed by 3 modules of a linear acceleration estimator, an external acceleration detector and an pseudo-accelerometer output estimator. The algorithm also has an effective switching structure based on probability and simple feedback loop for the extended Kalman filter. A special test equipment using linear motor for the testing of the 3D pose sensor was developed and the experimental results showed its very fast convergence to real values and effective responses. Popular DSP of TMS320F2812 was used to calculate robot's 3D attitude and translated acceleration, and the whole system were packed in a small size for humanoids robots. The output of the 3D sensors(pitch, roll, 3D linear acceleration, and 3D angular rate) can be transmitted to a humanoid robot at 200Hz frequency.

A Kalman Filter Localization Method for Mobile Robots

  • Kwon, Sang-Joo;Yang, Kwang-Woong;Park, Sang-Deok;Ryuh, Young-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.973-978
    • /
    • 2005
  • In this paper, we investigate an improved mobile robot localization method using Kalman filter. The highlight of the paper lies in the formulation of combined Kalman filter and its application to mobile robot experiment. The combined Kalman filter is a kind of extended Kalman filter which has an extra degree of freedom in Kalman filtering recursion. It consists of the standard Kalman filter, i.e., the predictor-corrector and the perturbation estimator which reconstructs unknown dynamics in the state transition equation of mobile robot. The combined Kalman filter (CKF) enables to achieve robust localization performance of mobile robot in spite of heavy perturbation such as wheel slip and doorsill crossover which results in large odometric errors. Intrinsically, it has the property of integrating the innovation in Kalman filtering, i.e., the difference between measurement and predicted measurement and thus it is so much advantageous in compensating uncertainties which has not been reflected in the state transition model of mobile robot. After formulation of the CKF recursion equation, we show how the design parameters can be determined and how much beneficial it is through simulation and experiment for a two-wheeled mobile robot under indoor GPS measurement system composed of four ultrasonic satellites. In addition, we discuss what should be considered and what prerequisites are needed to successfully apply the proposed CKF in mobile robot localization.

  • PDF