DOI QR코드

DOI QR Code

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui (Department of Civil Engineering, Chinese Military Academy)
  • Received : 2013.01.31
  • Accepted : 2013.07.30
  • Published : 2013.10.25

Abstract

This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Keywords

Acknowledgement

Supported by : National Science Council in Taiwan

References

  1. Amoroso, S.D. and Levitan, M.L. (2011), "Wind loads for high-solidity open-frame structures", Wind Struct., 14(1), 1-14. https://doi.org/10.12989/was.2011.14.1.001
  2. Banik, S.S., Hong, H.P. and Kopp, G.A. (2010), "Assessment of capacity curves for transmission line towers under wind loading", Wind Struct., 13(1), 1-20. https://doi.org/10.12989/was.2010.13.1.001
  3. Chen, T.C. and Lee, M.H. (2008), "Inverse active wind load inputs estimation of the multilayer shearing stress structure", Wind Struct., 11(1), 19-33. https://doi.org/10.12989/was.2008.11.1.019
  4. Chen, T.C. and Lee, M.H. (2008), "Intelligent fuzzy weighted input estimation nethod applied to inverse heat conduction problems", Int. J. Heat Mass Tran., 51(17-18), 4168-4183. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.026
  5. Elshafey, A.A., Haddara, M.R. and Marzouk, H. (2011), "Estimation of excitation and reation forces for offshore structures by neural networks", Ocean Syst. Eng., 1(1), 1-15.
  6. Fabunimi, J.A. (1986), "Effects of structural modes on vibratory force determination by the pseudo inverse technique", AIAA J., 24(3), 504-509. https://doi.org/10.2514/3.9297
  7. Geurts, C. and Bentum, C.V. (2010), "Wind loads on T-shaped and inclined free-standing walls", Wind Struct., 13(1), 83-94. https://doi.org/10.12989/was.2010.13.1.083
  8. Hillary, B. and Ewins, D.J. (1984), "The use of strain gauges in force determination and frequency response function measurements", Proceedings of the 2nd International Modal Analysis Conference, Orlando, FL.
  9. Hiroshi, M., Shigeki, S., Hiroyuki, F. and Masao, N. (2002), "Investigation of automatic path tracking using an extended Kalman filter", JASE Review, 23(1), 61-67. https://doi.org/10.1016/S0389-4304(01)00171-0
  10. Huang, C.H. (2001), "An inverse nonlinear force vibration problem of estimating the external forces in a damped system with time-dependent system parameters", J. Sound Vib., 242(5), 749-765. https://doi.org/10.1006/jsvi.2000.3196
  11. Huang, C.H. (2005), "A generalized inverse force vibration problem for simultaneously estimating the time-dependent external forces", Appl. Math. Model., 29(11), 1022-1039. https://doi.org/10.1016/j.apm.2005.02.006
  12. Lee, M.H. (2012), "Inverse active vibration force inputs estimation for a beam-machine system", Int. J. Syst. Sci., 43(4), 765-775.
  13. Li, C., Li, Q.S., Huang, S.H., Fu, J.Y. and Xiao, Y.Q. (2010), "Large eddy simulation of wind loads on a long-span spatial lattice roof", Wind Struct., 13(1), 57-82. https://doi.org/10.12989/was.2010.13.1.057
  14. Ma, C.K. and Ho, C.C. (2004), "Investigation of input force estimation of a cantilever beam including the consideration of nonlinearity", J. Taiwan Soc. Naval Archit. Marine Eng., 23(4), 221-229.
  15. Mara, T.G., Galsworthy, J.K. and Savory, E. (2010), "Assessment of vertical wind loads on lattice framework with application to thunderstorm winds", Wind Struct., 13(5), 413-431. https://doi.org/10.12989/was.2010.13.5.413
  16. Masri, S.F. and Caughey, T.K. (1999), "A nonparametric identification technique for nonlinear dynamic problem", J. Appl. Mech. - T. ASME, 46, 433-447.
  17. Mendel, J.M. (1995), Lessons in estimation theory for signal processing, Communications, and Control, Prentice-Hall PTR.
  18. Michaels, J.E. and Pao, Y.H. (1985), "The inverse source problem for an oblique force on an elastic plate", J. Acoust. Soc. Am., 77, 2005- 2010. https://doi.org/10.1121/1.391772
  19. Osinski, Z. (1998), Damping of vibrations, (Ed., A.A. Balkema).
  20. Wang, L.X. (1994), Adaptive fuzzy systems and control: design and stability analysis, Prentice-Hall, Englewood Cliffs, NJ.
  21. Yang, Y.B. and Yau, J.D. (1997), "Vehicle-bridge interaction element for dynamic analysis", J. Struct. Eng. - ASCE, 123, 1512-1518. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1512)
  22. Zhao, L. and Ge, Y.J. (2010), "Wind loading characteristics of super-large cooling towers", Wind Struct., 13(3), 257-273. https://doi.org/10.12989/was.2010.13.3.257