• Title/Summary/Keyword: explosives

Search Result 1,148, Processing Time 0.019 seconds

Minimum Burning Pressure of Emulsion Explosives (에멀젼폭약의 최소연소압력에 관한 연구)

  • 이승찬;고재순;이영호
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.79-84
    • /
    • 2004
  • It is well accepted that modem emulsion explosives are intrinsically much less sensitive than traditional products such as dynamites or black powder. However, they have still been involved in a significant number of accidental explosions. In October 1975, Canadian Research, Limited's, Energetic Research Laboratory in Quebec exploded. Although explanations for the incident varied, one logical explanation was that the pump used in transporting the emulsion dead headed, thereby turning mechanical work in to frictional heating under a zero flow rate. There is a minimum pressure required for combustion(MBP) to propagate in emulsion explosives. A stable deflagration may lead to a deflagration-to-detonation transition(DDT) in emulsion explosives. Tests were also performed on sensitized sampled consisting of 6 to 21% waters as well as 1 to 11% aluminium powder. It was founded the emulsion explosives consisting of 6% waters had the lowest minimum homing pressure(MBP) of 3 bar, and the 21% waters were unable to achieve sustained homing at pressures as high as 100 bar. The aluminium contained explosives tested here displayed a MBP higher than that of without emulsion. It appears that this test may offer a firm ground for the classification of emulsion explosives in view of the regulating the hazards associated with the various process used for their manufacturing and transport.

Research on Effective Scientific Investigation Methods with Regards to Explosion Accidents (폭발사고시 효과적인 과학수사 방법에 관한 연구)

  • Jun, Sang-Gun;Chae, Jong-Min
    • Journal of forensic and investigative science
    • /
    • v.1 no.1
    • /
    • pp.72-87
    • /
    • 2006
  • Accidents and terrorist acts that utilize explosives have a great influence on society and thus require a prompt investigation for the arrest of the culprit. However, such investigations are often met with difficulties due to the vastness of the crime scene, restrictions on approaching the scene, fragility of the evidence, complexity of investigation, and the lack of expertise. In spite of such facts, scientific investigation regarding explosives have not been widely studied in Korea. Therefore, the focus of this research primarily concerns the effective scientific investigation methods in cases of accidents that involve chemical explosives. Although the a systematic investigation method is at the heart of scientific investigation in cases of explosive accidents, it is only at its rudimentary stage. Therefore, in this research, a systematic investigation method is put forth for the 'scene investigation, the documentation of the scene, and the collection and processing of evidence. Further, I have set forth a 'scene investigation check list' the ensure a thorough scene investigation and to promote an exhaustive evidence collection that would guarantee the admissibility of such evidence in court. The above efforts were aimed at simplifying the currently complicated investigation system. 1) In the future, a guidebook that can be generally applied to accidents involving explosives in Korea ught to be produced, a continual systematic education and integrated training excises for investigators ought to be established, laws that require additives in explosives ought to be instituted so that the type, components, and source of explosives can be identified, and lastly, a database that contain information on former explosion accidents, trends, and techniques of criminal activities that involve explosion accidents should be compiled.

  • PDF

A Case Study of the Underwater Blasting Using Emulsion Explosives (에멀젼폭약을 사용한 수중발파 사례)

  • An, Bong-Do;Lee, Ik-Joo;Heo, The-Moon
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • In many cases of underwater blasting in South Korea, the special blasting is mainly used for deepening harbor, installing gas pipes, or well blasting to build a bridge. The procedure of well blasting is almost same with shaft blasting, but the difference is that water is filled in before blasting. In case of deepening blasting under water, the first step like drilling, arranging explosives, and wire connection is done on a barge, then the next step such as charging and tamping is accomplished under water by expert divers. Therefore, underwater blasting needs precise and exact plan before blasting. In this paper, authors would like to introduce a case of underwater blasting for deepening the Busan new port with emulsion explosives and non-electric detonators in order to get some of 8,500TEU out sized container vessels entered into the port and to make safe. Considering environment and vibration, the blasting was controlled to minimized the damage to the lighthouse nearby. It will be great help to many other blasting sites where emulsion explosives and non-electric detonators are used for underwater blasting through this case.