• Title/Summary/Keyword: explicit algorithm

Search Result 333, Processing Time 0.024 seconds

STRONG CONVERGENCE OF GENERAL ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1031-1047
    • /
    • 2017
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and other explicit algorithm) for nonexpansive mappings in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Strong convergence theorems for the sequences generated by the proposed algorithms are established.

An Integrated Production-Inventory Model (통합생산재고모형(統合生産在庫模型)에 관한 연구(硏究))

  • No, In-Gyu;Park, Sang-Don
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.29-37
    • /
    • 1985
  • This paper studies a production-inventory model which unifies the inventory problem of raw materials and the finished product for a single product manufacturing system. The integrated production-inventory model is formulated wth a nonlinear mixed integer programming problem. An algorithm is developed by utilizing the finite explicit enumeration method. The algorithm guarantees to generate an optimal policy for minimizing the total annual variable cost. A mumerical example involving 15 raw materials is given to illustrate the recommended solution procedure.

  • PDF

Transfer Matrix Algorithm for Computing the Geometric Quantities of a Square Lattice Polymer

  • Lee, Julian
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1808-1813
    • /
    • 2018
  • I develop a transfer matrix algorithm for computing the geometric quantities of a square lattice polymer with nearest-neighbor interactions. The radius of gyration, the end-to-end distance, and the monomer-to-end distance were computed as functions of the temperature. The computation time scales as ${\lesssim}1.8^N$ with a chain length N, in contrast to the explicit enumeration where the scaling is ${\sim}2.7^N$. Various techniques for reducing memory requirements are implemented.

NON-ITERATIVE DOMAIN DECOMPOSITION METHOD FOR THE CONVECTION-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • This paper proposes a numerical method based on domain decomposition to find approximate solutions for one-dimensional convection-diffusion equations with Neumann boundary conditions. First, the equations are transformed into convection-diffusion equations with Dirichlet conditions. Second, the author introduces the Prediction/Correction Domain Decomposition (PCDD) method and estimates errors for the interface prediction scheme, interior scheme, and correction scheme using known error estimations. Finally, the author compares the PCDD algorithm with the fully explicit scheme (FES) and the fully implicit scheme (FIS) using three examples. In comparison to FES and FIS, the proposed PCDD algorithm demonstrates good results.

Design and Evaluation of Video Summarization Algorithm based on EEG Information (뇌파정보를 활용한 영상물 요약 알고리즘 설계와 평가)

  • Kim, Hyun-Hee;Kim, Yong-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.4
    • /
    • pp.91-110
    • /
    • 2018
  • We proposed a video summarization algorithm based on an ERP (Event Related Potentials)-based topic relevance model, a MMR (Maximal Marginal Relevance), and discriminant analysis to generate a semantically meaningful video skim. We then conducted implicit and explicit evaluations to evaluate our proposed ERP/MMR-based method. The results showed that in the implicit and explicit evaluations, the average scores of the ERP / MMR methods were statistically higher than the average score of the SBD (Shot Boundary Detection) method used as a competitive baseline, respectively. However, there was no statistically significant difference between the average score of ERP/MMR (${\lambda}=0.6$) method and that of ERP/MMR (${\lambda}=1.0$) method in both assessments.

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

Application of the Taguchi Method to the Analysis of the Numerical Parameters Influencing Springback Characteristics (스프링백 특성에 영향을 미치는 수치변수의 분석을 위한 다구치 실험계획법의 응용)

  • Kim, Hyung-Jong;Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.211-218
    • /
    • 2000
  • It is desirable but difficult to predict springback quantitatively and accurately for successful tool and process design in sheet stamping operations. The result of springback analysis by the finite element method (FEM) is sensitively influenced by numerical factors such as blank element size, number of integration points, punch velocity, contact algorithm, etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on the result of springback analysis quantitatively and to obtain the combination of numerical factors which gives the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by the dynamic-explicit finite element method says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The U-draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model because it is most popular one for evaluating the springback characteristic.

  • PDF

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

A Study on Flowfield-Dependent Mixed Explicit-Implicit Method in Heat and Fluid Dynamics Problems (유동변수 파라미터에 의한 혼합 내-외재적 열-유동장 수치해석 방법 연구)

  • Mun, Su-Yeon;Song, Chang-Hyeon;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.989-996
    • /
    • 2001
  • High-speed and low-speed flows are simulated numerically by flowfield-dependent mixed explicit-implicit (FDMEI) method. This algorithm depends on implicitness parameters of convection, diffusion, diffusion gradients, and source terms which are calculated from the changes of local Mach, Reynolds, Peclet, and Damkohler numbers between adjacent nodes. Convection phenomena or shock waves are resolved from Mach number-dependent implicitness parameters whereas diffusion or viscous actions are simulated by Reynolds number or Peclet number-dependent implicitness parameters. Fluctuation components of all variables are properly accommodated spatially and temporally in the FDMEI procedure. To illustrate, some benchmark example problems are presented for comparisons of the FDMEI results with other available data. These results appear to be encouraging and point toward the need for further investigations of the FDMEI theory.

A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows (고속 흐름에서의 충격파와 난류경계층의 상호작용에 관한 수치적 연구)

  • Mun, Su-Yeon;Son, Chang-Hyeon;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.322-329
    • /
    • 2001
  • A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.