• Title/Summary/Keyword: expected cost

Search Result 3,020, Processing Time 0.027 seconds

Effects of Long-Term Harbor Shutdown and Temporal Operational Stoppage upon Optimal Design of Vertical Breakwater Caisson (장기간의 항만 폐쇄와 일시적 운영 중단이 직립 방파제 케이슨의 최적 설계에 미치는 영향)

  • Suh, Kyung-Duck;Kim, Deok-Lae;Kim, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.113-127
    • /
    • 2007
  • In this study, a model to calculate the expected total construction cost is developed that simultaneously considers the rehabilitation cost related to the sliding of the caisson, the economic damage cost due to harbor shutdown in the event of excessive caisson sliding, and the economic damage cost due to temporal operational stoppage by excessive wave overtopping. A discount rate is used to convert the damage costs occurred at different times to the present value. The optimal cross-section of a caisson is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit for the expected sliding distance of the caisson during the lifetime of the breakwater. Two values are used for the allowable limit: 0.3 and 0.1 m. It was found that the economic damage cost due to harbor shutdown by excessive caisson sliding is more critical than the rehabilitation cost of the caisson or the economic damage cost by excessive wave overtopping in the decision of the optimal cross-section. In addition, the optimal cross-section of the caisson was shown to be determined by the allowable limit for the expected sliding distance rather than the minimum expected total construction cost as a larger value is used for the threshold sliding distance of the caisson for harbor shutdown.

Reliability-Optimal Design Method of High-Speed Railway Bridges Based upon Expected Life-Cycle Cost (기대생애주기비용에 기초한 고속철도교량의 신뢰성-최적설계 방안)

  • Lee, Woo-Sang;Bang, Myung-Seok;Han, Sung-Ho;Lee, Chin-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.102-110
    • /
    • 2010
  • The reliability evaluation may be a efficient method for estimating of the quantitative structural safety considering the effect of uncertainties included in high-speed railway bridges. The expected life-cycle cost(LCC) based upon the reliability evaluation will reasonably offer the safety level and design criteria of high-speed railway bridges. Therefore, this study determined the expected life-cycle cost and optimal design method of high-speed railway bridges on the basis of the result of the numerical analysis and reliability evaluation. For this, after creating various design method based upon the standard design of high-speed railway bridges, the numerical analysis is conducted on each of the alternative design methods. The reliability evaluation by the design strength limit state function is conducted considering the effect of external uncertainties on the basis of the numerical analysis result. The expected life-cycle cost of high-speed railway bridges is calculated on the basis of the reliability evaluation result by each of the alternative design methods. Also, the optimal design method is determined using the calculated expected life-cycle cost. In addition, The result of reliability evaluation and expected life-cycle cost of optimal design method are examined considering the effect of internal uncertainties. It is expected that the result of this study can be used as a basic information for the systematic safety evaluation and optimal structure design of high-speed railway bridges.

Development of Stochastic Expected Cost Model for Preventive Optimal- Maintenance of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 예방적 최적 유지관리를 위한 추계학적 기대비용모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.276-284
    • /
    • 2013
  • A stochastic expected cost model has been suggested by combining the nonlinear cumulative damage model with the expected cost model together which can be useful for doing the preventive optimal-maintenance of the armor units of rubble-mound breakwaters. The suggested model has been satisfactorily calibrated by comparison of the results from others models, also the sensitivity analysis has been carried out in detail under the variation of the associated parameters with the model. The optimal repair times can be directly evaluated by minimizing the expected cost rates that depend on the social importances, damage intensity functions and resistance limits. Finally, the present cost model has been straightforwardly applied to the armor units of rubble-mound breakwaters. Based on the assumption of turning the damaged structure back to the state as good as new after repairs, the required optimal repair times and magnitudes can be determined quantitatively in terms of the optimum balance between the costs and benefits on the preventive maintenance.

Comments on : An Expected Loss Model for FMEA under Periodic Monitoring of Failure Causes (FMEA에서 주기적인 고장원인 감시하의 기대손실모형에 대한 소고)

  • Yun, Won Young;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.321-324
    • /
    • 2014
  • Kwon et al. (2013) studied the optimal monitoring interval of systems with finite life cycle. It is assumed that there are several failure modes from several failure causes and the occurrence of causes follows a homogeneous Poisson process. The total expected cost is used as an optimization criterion. In this article, we derive newly the total expected cost under the same assumptions and consider some extended models.

An Economic Design of the Chart with Variable Sample Size Scheme

  • Park, Chang-Soon;Ji, Seon-Su
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.403-420
    • /
    • 1994
  • An economic design of the $\bar{X}-R$ chart using variable sample size (VSS) scheme is proposed in this paper. In this design the sample size at each sampling time changes according to the values of the previous two sample statistics, sample mean and range. The VSS scheme uses large sample if the sample statistics appear near inside the control limits and smaller sample otherwise. The set of process parameters, such as the sampling interval, control limits and the sample sizes, are chosen to minimize the expected cost per hour. The efficiency of the VSS scheme is compared to the fixed sample size one for cases where there is multiple of assignable causes. Percent reductions of the expected cost in the VSS design are calculated for some given sets of cost parameters. It is shown that the VSS scheme improves the confidence of the procedure and performs statistically better in terms of the number of false alarms and the average time to signal, respectively.

  • PDF

Optimal Schedules of Periodic Preventive Maintenance Model with Different PM Effect

  • Lim, Jae-Hak
    • International Journal of Reliability and Applications
    • /
    • v.9 no.1
    • /
    • pp.113-122
    • /
    • 2008
  • In this paper, we consider a periodic preventive maintenance policy in which each preventive maintenance reduces the hazard rate of amount proportional to the failure intensity, which increases since the system started to operate. And the effect of preventive maintenance at each preventive maintenance epoch is different. The expected cost rate per unit time for the proposed model is obtained. We discuss the optimal number N of the periodic preventive maintenance and the optimal period x, which minimize the expected cost rate per unit time and obtain the optimal preventive maintenance schedule for given cost structures of the model. A numerical example is given for the purpose of illustrating our results when the failure time distribution is Weibull distribution.

  • PDF

Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization (협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

Optimal Working Cycles for Minimal Repair Policy (정기교체 및 최소수리를 고려한 작업주기 횟수 최적화)

  • Lee, Jinpyo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.201-214
    • /
    • 2020
  • Purpose: The purpose of this paper is to determine an optimal number of cycle times for the replacement under the circumstance where the system is replaced at the periodic time and the multiple number of working cycles whichever occurs first and the system is minimally repaired between the replacements if it fails. Methods: The system is replaced at periodic time () or cycle time, whichever occurs first, and is repaired minimally when it fails between successive replacements. To determine the optimal number of cycle times, the expected total cost rate is optimized with respect to the number of cycle times, where the expected total cost rate is defined as the ratio of the expected total cost between replacements to the expected time between replacements. Results: In this paper, we conduct a sensitivity analysis to find the following results. First, when the expected number of failures per unit time increases, the optimal number of cycle times decreases. Second, when the periodic time for replacement becomes longer, the optimal number of cycle times decreases. Third, when the expected value for exponential distribution of the cycle time increases, the optimal number of cycle times increases. Conclusion: A mathematical model is suggested to find the optimal number of cycle times and numerical examples are provided through the sensitivity analysis on the model parameters to see the patterns for changes of the optimal number of cycle times.

Ordering Policy for Planned Maintenance with Salvage Value

  • Park, Young T.;Jing, Sun
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.15-23
    • /
    • 2006
  • A spare ordering policy is considered for planned maintenance. Introducing the ordering, uptime, downtime, inventory costs and salvage value, we derive the expected cost effectiveness. The problem is to determine jointly the ordering time for a spare and the preventive replacement time for the operating unit which maximize the expected cost effectiveness. Some properties regarding the optimal policy are derived, and a numerical example is included to explain the proposed model.

A Note on Sudden Death Tests (sudden death 시험에 대한 고찰)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.139-152
    • /
    • 2012
  • Successive and simultaneous sudden death tests are compared with the complete and Type II censored samples in terms of expected test duration and Total Time on Test(TTT) subject to the same number of failures in order to maintain the equal statistical precision under Weibull lifetime distribution with known shape parameter. Also, two sudden death tests under a proposed cost model are discussed and a numerical example is provided to illustrate the use of the proposed cost model.