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Abstract

A spare ordering policy is considered for planned maintenance. Introducing the ordering,
uptime, downtime, inventory costs and salvage value, we derive the expected cost effec-
tiveness. The problem is to determine jointly the ordering time for a spare and the pre-
ventive replacement time for the operating unit which maximize the expected cost effec-
tiveness. Some properties regarding the optimal policy are derived, and a numerical example
is included to explain the proposed model.
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1. Introduction

Consider a 1-unit system, where each failed unit is scrapped without repair and each spare
is provided only by an order. The original unit begins operating at time 0. If the original
unit fails before a specified time ¢,, we place an order immediately at the failure time in-
stant and replace the failed unit with the new one as soon as it is delivered. On the other
hand, if the operating unit does not fail up to ¢,, we place an order for a spare at t; and
replace the unit as follows: (i) If the unit fails between t, and another specified time
t,(=t,), the failed unit is replaced as soon as a spare is available. (ii) When the unit does
not fail up to ¢, it is replaced preventively at ¢, if a spare is available, or as soon as the
ordered spare is delivered.

The time between successive replacements is a cycle and the behavior in each cycle
repeats. The decision variables are the scheduled times ¢, and ¢, for spare ordering and pre-
ventive replacement maximizing the expected cost effectiveness. The cost effectiveness is de-
fined as “steady-stated availability/expected cost rate” which reflects the efficiency per dollar
outlay. This criterion is useful in the case that the benefits obtained from the system oper-
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ation are not reducible to monetary terms as in weapon systems [2].

Symbols

f©), F(t), m  pdf, cdf, and mean value of the lifetime of a unit
F(t) 1-F(t)

h(t) f(t)/F(t), instantaneous failure rate of a unit
h,(t) [F(t+z)—F())/F(t), interval failure rate of a unit
g(z), G(z), m, pdf, cdf, and mean value of lead time

ty scheduled time for spare ordering

t scheduled time for preventive replacement(; ¢, = 1)
I ordering cost

Cy uptime cost per unit time operation

¢y downtime cost per unit time due to spare shortage
c, holding cost of a spare per unit time

v, salvage value per unit time for residual lifetime
Ulty t;) expected uptime per cycle

Clty, t,) expected cost per cycle

E(ty, t,) Uty t,)/C(t,, t,)expected cost effectiveness

Other symbols are defined when needed.

2. Cost Effectiveness Model

From the renewal reward theorem, the expected cost rate for an infinite time span is the
expected cost per cycle divided by the expected cycle length. Since the time between suc-
cessive replacements is a cycle, the following five mutually exclusive and exhaustive possi-
bilities exist as in Park and Park [4]:

(i) the operating unit fails before ¢,

(ii) the operating unit fails between t, and the arrival of the ordered spare

(iii) the operating unit fails between the arrival of the ordered spare and ¢,

(iv) the ordered spare arrives before ¢, and the operating unit does not fail up to ¢,.

(v) the ordered spare arrives after #, and the operating unit does not fail before the arriv-

al of the ordered spare.

The expected cycle length is
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f 0 @+m)fdt+ [ j (to + %) f(O)g(x)dtdx + | (: j{"ﬂr F("g(x)dtdx
7 [nrwgdids + | o o+ X (g (x)drdx

fy == n-ty oy, —
= m + jo F(dt + jo [ F)g(x)drax (1)
Downtime occurs in the cases (i) and (ii), and thus the expected downtime per cycle is
i 0 plg+X 0 ely+x
m, j’o F(Odr + jo L "t +x=1)f (g(x)drdx = jo j, U F()g(xtdx Q)
Since uptime per cycle is cycle length minus downtime, the expected uptime per cycle is

Uttty =m + [, Fdr+ [ ! Foygdias - [ [ " F (g (xyics

= [ [ Fogedis + [ [! Fo)goduax 3

The expected cost per cycle is the sum of the ordering, uptime, downtime and spare hold-
ing costs and salvage value. Since the number of orders per cycle is one, the ordering cost
per cycle is C,. From (3), the expected uptime cost per cycle is

© plg+x — -ty oty —
all, [, F@godide+ [ ' Fe)g(xydre] @
From (2), the expected downtime cost per cycle is
®  wly+x
e, . POz )

Holding of a spare occurs in the cases (iii) and (iv), and the expected holding cost per

cycle is

o [ I =t =0 fgCdrdx+ [ 70,1 - x)f(r)g(x)drdx}

= o[ [ Fg(xdas ©)
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It seems reasonable that salvage value of a used unit, which is still operable, is propor-
tional to the expected residual lifetime [3]. Salvage value occurs in the cases (iv) and (v),
and the expected salvage value per cycle is

w17 [ Fogeodas+ 7 [ Figods |

= v, [" F(t,+x)G(x)dx 0]
hto
Thus the expected cost per cycle is

Clpt) = o +al]) [ Fgtodid+ [ [! Fg@odid + ¢, [ | " (g (x)dids

te, [ f F(ng(xydtdx ~v, [ F(t+x)G(x)dx ®

Since each replacement is a regeneration point, the cost effectiveness “steady-stated avail-
ability/expected cost rate” can be rewritten as “expected uptime in a cycle/expected cost per
cycle.” Thus, the expected cost effectiveness is

E@t,,1,)=U(t,,t,)/ C(t,,1,) )
where

Uty t;) and C(t,t,) are given by (3) and (8) respectively.

3. Optimal Policy

Theorem 1. For any fixed ordering time t, the expected cost effectiveness, E(ty,¢,), is
maximized at either ¢,=t;, or ¢ = oo.

Proof. Differentiating E(t), ¢;)in (9) with respect to ¢, yields

OE(1y,1,)1 81, = AWt )[F(t,)G(t, ~1,)/ Clto,1,)’] (10)

where

Alt) =c,~vm+c, [ | " F(g(dids -c, [ | “F () g (x)dtdx (11)




The Asian Journal on Quality / Vol. 7, No. 3 19

If A(t,) <0, then 8E(t,t,)/ot, <0 for all t,=(#), ) and thus E(t,t) is maximized at
t;=t,. Similarly if A(t,) >0, E(ty,¢) is maximized at ¢,= co. If A(t)) =0, all values of ¢
give the same cost effectiveness and both ¢, and co are as good as any. Hence an optimal
value of ¢, is either ¢, or co.

Thus we need only consider the two cases (¢,=1, and ¢,= o) in order to obtain the opti-

mal ordering policy which maximizes the cost effectiveness. Now, let us treat the two cases.

Policy 1: Replacement on spare’s arrival
In this case the spare on arrival replaces the original unit irrespective of the condition of
the original one. Substituting ¢,= ¢, into (9), we obtain

E\(t)) = E(ty,1,) = U,(1,)/ C, (1) (12)
where
Uytt) = [ [ F(g(xdiax (13)

C@t,)=c, +c, j:’ j;"”F(z)g(x)dtdx ve, [ f " FO)g(x)ddx - v, j:’ F(t, +x)G(x)dx  (14)

Define the numerator of the derivative of E,(t,) in (12) divided by F(¢,) as
pite) = 1= [ b (1)g(x)dx])-C, () = U, () [, —¢, =v) [ ht)g)de +¢, +v,]  (15)

Then, we have the following theorem regarding the optimum ordering time ¢, * which
maximizes E,(t,).

Theorem 2. (1) Suppose that A(t) is strictly increasing.

(1) If p(0) <0, then the optimum ordering time ¢, * =0, ie., place an order for a
spare at the same instant when a unit is put in service.

(ii) If p,(0) >0 and p,(0) <0, then there exists a finite and unique optimum ordering
time £, * (0<ty* < oo) satisfying p, (¢, * ) =0.

(iii) If p,(0) =0, then the optimum ordering time ¢y * =oo, ie., place an order for a
spare at the instant of failure of the operating unit.

(2) Suppose that h(t) is non-increasing. Then, t, * is either 0 or .

Proof. Differentiating FE, (¢,) with respect to ¢, and setting it equal to zero implies p, (¢,) =0.
Further,
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Pt ==L [ B ()8 ()} C,(0) = Uy(to)- [, e, [} b, (15)g(x)dkx] (16)

Notice that the difference between downtime cost and uptime cost should be larger than
salvage value (i.e., ¢;—c, =v,) to justify system operation. Since the interval failure rate
h,(t,) and the instantaneous failure rate h(t) have the same monotone properties (see Barlow
and Proschan [1, p.23]), p,(t) is strictly decreasing if h(t) is strictly increasing, and p,(t) is
non-decreasing if h(t) is non-increasing. Thus, the existence of ¢, * in the theorem follows
trivially.

Policy 2: No preventive replacement
In this case the delivered spare is put into inventory if the original unit is still operating,
and not used until the original one fails. Substituting ¢, =co into (9), we obtain

E,(1,) = E(t,,0) = U,(t,)/ C,(t,) )
where
Uyt = [} [ F)gtodia + [ 7 F)g(x)dide =m (18)
Colte)=c, +em+c, [ [ Fig@dias + ¢, [ [ F()g(x)dic (19)

Define the numerator of the derivative of E,(t,) in (17) divided by F(¢,) as

Palty) ==ml(c, +¢,) [ h(t,)g(x)dx —c,] (20)

Then, we have the following theorem regarding the optimum ordering time h(t)¢y,*

which maximizes E,(t,).

Theorem 3. (1) Suppose that h(t) is strictly increasing.

(i) If p,(0) <0, then the optimum ordering time ty,* =0.

(ii) If p,(0) >0 and p,(c0) <0, then there exists a finite and unique optimum ordering
time ty,* (0 <ty* <oo) satisfying p,(t,*)=0.

(iii) If p,(o) =0, then the optimum ordering time ty, * = co.

(2) Suppose that h(t) is non-increasing. Then, h(t) is either 0 or c.

Proof. The proof is omitted since it is similar to the proof Theorem 2.

Theorem 1 shows that either Policy 1 or Policy 2 is optimal, and Theorems 2 and 3 show
the existence of the optimum ordering times for the two policies. The following theorem
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shows that which one is the global optimal ordering policy according to the cost parameters.

Lemma. For any fixed ordering time ¢, one and only one of the following three state-
ments is true:

@) E/(ty) > Ey(t,) > 1/(c, +c;, +v,)

(b) E(t,) =E,(t,) =1/(c, +c, +v,)

(c) B, (t,) < Ey(t,) <1/(c,+c, +v,)

Proof. (a) Suppose that E;(t,) = E(ty, ) > 1/(c, +¢, +v,). Since A(ty) in (11) can be rewrit-

ten as
A(ty) =[1—(c, +¢, +v,)Elty t,)] - Clty t,), @n

A(ty,) <0 and thus 8E(ty, t,)/at; <0 for all t, €(ty,o) in (10), which implies Policy 1 is
optimal. Hence, if E,(t,) >1/(c,+¢,+v,), then E,(t,) > E,(t)) >1/(c, +¢, +v,).

Similarly, we can prove that (b) if E,(t,) =1/(c, +¢c, +v,), then E,(t,) = E,(t,) =1/(c, +¢, +v,),

and (c) if E,(t,) <1/(c,+c,+v,), then E, (t)) < E,(t,) <1/(c, +¢,+v,).

Since the three conditions in the proofs of (a), (b), and (c¢) (namely, E,(¢,) >1/
(e, +ep+u,), Blty)=1/(c, +c,+v,), Blty) <1/(c,+c,+v,)) are mutually exclusive and ex-

haustive, one and only one of the three statements in the lemma is true.

Theorem 4. Let ty,* and t,* be the optimum ordering times which maximize E,(t,)
and E,(t,) respectively. Then, one and only one of the following three statements is true:

@) E (ty*) > E(ty* ) >1/(c, +¢, +v,)

(b) E(ty, * ) =E(t,*)=1/(c,+c,+v,)

(©) E\(ty *) <Ey(ty,* ) <1/(c,+c, +v,)

Proof. (a) Suppose that E,(t,*)>1/(c,+¢c, +v,). Then, from the Lemma, we obtain
E\(ty*) > Ey(tyy* ) > 1/(c, +c, +v,). (22)
From the optimality of E,(t,),
Bty *) = By(t* ). (23)
Applying inequality (23) to (22), it follows
E (ty *) > E,(tp* ) > 1/(c, +c;, +v,).
(b) Suppose that E,(t,* ) =1/(c,+¢,+v,). Then, from the Lemma, we get

E, (tyy * ) = Ey(tgy * ) =1/(c, +¢, +v,), (24)
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and from the optimality of E,(t,),

E,(t) < Ey(tgp* ) =1/(c,+¢c, +v,) for all ¢,
which implies from the Lemma,

E (t,) < E,(t,) < 1/(c, +c, +v,) for all ¢, (25)
From (24) and (25), we get

E (ty* ) = E/(t,) for all ¢,
Thus, t,* maximizing E,(t,) also maximizes E,(t,), ie.,

E(ty* ) =E (ty % ). (26)
Substituting (26) into (24), it follows

E(ty * ) =Ey(ty * ) =1/(c, +c; +v,).

(c) Suppose that E,(t,* ) <1/(c, +c,+v,). Then,
E,(t,) <1/(c, +c, +v,) for all ¢,

which implies from the Lemma,

E, (t,) < Ey(t,)) <1/(c, +¢c,+v,) for all ¢,
Thus,

E/(ty * ) < Ey(ty* ) <1/(c, +¢, +v,).

Since the three conditions in the proofs of (a), (b), and (c) are mutually exclusive and
exhaustive, this completes the proof.

m 1
cgtemtcem, ¢, tc+ov,

Comollary. If , Policy 1 is optimal.
1 . m

m if
c, te, v, cytec, mtceym,

. - N
Proof. Since E,(t,,* ) = E,(0) o miam.’

E,(tp* ) >

1 m 1 . .
—_— m 4 > is a sufficient
o Fo T, Thus, from (a) of Theore  aFemtem. et T

condition for Policy 1 to be optimal.

4. Numerical Example

For the purpose of illustration let us consider the following case: Both the lifetime and
lead time are gamma distributed with integer modulus.
Lifetime cdf F(t) =1—[1+0.003¢+(0.003t)*/2]exp(—0.003t), where mean m =1,000.




The Asian Journal on Quality / Vol. 7, No. 3 23

Lead time cdf G(z)=1-—(140.02z)exp(—0.02z), where mean m, = 100.
The cost parameters are ¢, = $8,000, ¢, =810, c,=$80, ¢, =$20, v,=$5.

In this case example, Policy 1 is optimal since —m -1 > -t -1
pie, y P ¢ temtem, 26 ¢, tc,tv, 357

Figure 1 shows how the expected cost rate E,(t,) and E,(t,) changes with respect to the
scheduled ordering time t¢,. The optimum ordering time ¢y * =541 and the corresponding
cost rate is E,(t, * ) =0.0414.
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Figure 1. Cost effectiveness F,(t,) as function of ordering time ¢,.
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