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Abstract. In this paper, we consider a periodic preventive maintenance policy in
which each preventive maintenance reduces the hazard rate of amount proportional
to the failure intensity, which increases since the system started to operate. And the
effect of preventive maintenance at each preventive maintenance epoch is different.
The expected cost rate per unit time for the proposed model is obtained. We discuss
the optimal number N of the periodic preventive maintenance and the optimal period
x, which minimize the expected cost rate per unit time and obtain the optimal
preventive maintenance schedule for given cost structures of the model. A numerical
example is given for the purpose of illustrating our results when the failure time
distribution 1s Weibull distribution.
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1. INTRODUCTION

As most of industrial systems become more complex and multiple-function oriented,
it is extremely important to avoid the catastrophic failure during actual operation as well
as to slow down the degradation process of the system. One way of achieving these goals
is to take the preventive maintenance (hereafter, PM) while the system is still in operation.
Although more frequent PM’s certainly would keep the manufacturing system less likely
to fail during its operation, such PM policy inevitably requires a higher cost of
maintaining the system. Since Barlow and Hunter(1960) propose two types of PM policies,
many authors have addressed the problem of designing the optimal schedule for the PM
by determining the length of time interval between PM’s to minimize the average cost rate
of the system. Different types of PM policies studied in many literature are summarized in
Pham and Wang(1996) and Wang(2002).

In most of the PM policies discussed earlicr, the effect of PM is categorized into two
types. The first one is that PM reduces only the hazard rate of system. That is, PM makes
the manufacturing system less likely to fail during its operation. Nakagawa(1980)
considers an imperfect PM policy for which the system has a reduced age at each PM
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intervention. If the size of age reduction at each PM is equal to the PM period, then such a
policy becomes a perfect PM policy. Doyen and Gaudoin(2004) propose two classes of
imperfect PM models based on reduction of failure intensity or virtual age, which are
arithmetic reduction of intensity(ARI) model and arithmetic reduction of age(ARA) model.
In model, which is a specific case of ARI model, PM reduces the failure intensity of
amount proportional to the failure intensity, which increases since the last PM. And it is
assumed that the wear-out speed is the same as before PM.

The second type of the effect of PM is to slow down the degradation process of the
system by taking the preventive measure while the system is still in operation.
Canfield(1986) considers a periodic PM policy for which the PM slows the degradation
process of the system, while the hazard rate keeps monotone increase. Park, Jung and
Yum(2000) derive the optimal PM schedules by associating the Canfield's PM model with
various cost structures of operating the system.

Most of PM models try to achieve both of two types of the effect of PM. Lim and
Park(2007) propose a periodic PM policy in which each PM reduces the hazard rate of
amount proportional to the failure intensity, which increases since the last PM and slows
down the wear-out speed to that of new one. And the proportion of reduction in hazard
rate decreases with the number of PMs.

In this paper, we consider a periodic PM policy in which each PM reduces the hazard
rate of amount proportional to the failure intensity while the wear-out speed is the same as
that of system without any PM. The expected cost rate per unit time for the proposed
model is obtained. We discuss the optimal number N of the periodic PM and the optimal
period x, which minimize the expected cost rate per unit time and obtain the optimal PM
schedule for given cost structures of the model.

Section 2 describes the periodic PM model under consideration and its assumptions.
In Section 3, we derive the expression for the expected cost rate for the proposed PM
policy. Section 4 presents the solutions for the optimal period and the optimal number of
PM's which minimize the expected cost rate and thereby proposes the optimal PM
schedule for the periodic PM policy with improvement factor. In Section 5, the optimal
schedules are computed numerically the underlying failure times follow a Weibull
distribution.

Notation
h(t) hazard rate without PM
hpm(t)  hazard rate with PM
x period of PM
N* number of PM's conducted before replacement
Pk improvement factor in hazard rate at the i-th PM
Coir cost of minimal repair at failure
Com cost of PM
Cre cost of replacement

C(x,N)  expected cost rate per unit time
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2. MODEL AND ASSUMPTIONS

We consider a periodic PM model with an improvement factor which reduces the
hazard rate of the system after PM. The followings are assumed :

(1) The system begins to operate at time ¢=0.

(2) The PM is done at periodic time kx (k =1, 2, ...) where x>0, and is replaced by new
one at the N-th PM.

B)Forkx<t<(k+D)x, h (D), which is the hazard rate during the k-th PM period, is
the reduced hazard rate due to PM at kx, i.e. &(t) — py h(kx) for all, where 0< p; <1.
Here, p;h(kx) can be considered as the effect of PM at kx. When p;, =1, the system
after PM is restored to as good as new one and when p; =0, the system right after
PM has the same hazard rate as that just prior to PM. For 0< p; <1, the hazard rate

of the system is somewhat reduced after PM. After each PM, the ware-out speed is the
same as that of the system without any PM. Then, between two PM's, the failure rate

1s virtually parallel to the initial hazard rate regardless of the magnitude of pj .
(4) Forany k =1.2,..., p; satisfies that p,h(kx) 2 pp_1A((k-1)x).
(5) The system undergoes only minimal repairs at failures between PM's.

(6) The repair and PM times are negligible.
(7) (1) 1s strictly increasing and convex in £.

Assumption (4) is to guarantee that the PM at the time epoch kx (k =1,2,...) make
the system more reliable than before the PM. That is, the hazard rate right afier PM is
lower than hazard rate just prior to the PM.

3. EXPECTED COST RATE PER UNIT TIME

In this paper, we propose a periodic PM model with different improvement factor at
each PM. Under this model, the hazard rate 4 pm (t) 1s given by

(1) 0<t<x

"om (1) :{h(t)-«p;(h(kx) kx <t < (k+1)x 31

for k=12,... For t=0, £,,(0)=A(0) and x is the time interval between PM
interventions. In the equation (3.1), A(¢) represents the initial hazard rate at time ¢ and
P h(kx) is the amount of reduction in hazard rate due to the k-th PM.

Since it is well-known from Lemma 1.1 in Fontenot and Proschan(1984) that the
number of minimal repairs during the period k of PM is nonhomogeneous Poisson

process(NHPP) with intensity function j}f;"’”x h i ()dt , the expected cost rate per unit

time can be obtained in the following manner:
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Expected Cost Rate Per Unit Time
= [(expected cost of minimal repairs in [0, Nx))
+ (expected cost of PM in [0, Nx))
+ (expected cost of replacement)]/Nx.

Each expected cost given in the expected cost rate per unit time is obtained as
follows:

N-1

(1) Expected cost of minimal repairs in [0, Nx) =C,,, . jgﬂ)x h o ()dt , Where
k=0

- () is given in the equation ' 3.1

(ii) Expected cost of PM in [0, Nx) = (N —=1)C,, .

(1ii) Expected cost of replacement = C,, .

Using (1), (ii) and (iii), the expected cost rate per unit time for running the periodic
PM with improvement factor during /0, Nx/ is obtained as follows:

1
C(x,N)= E{Cmrjévx hpm@©)dt + (N =DCpp, + Cre]

- L [C 5 [0+ (k=10 — p,_ A(C =DMt + (N -1)Cp, + Cre}
Nx k=10 h
“—-1 C ol dt + (N -1)C C 3.2
- ,,,,gl(f)yk(t) t+(N=1)Cpp +Che | (3.2)

where y; () =ht+(k-Dx)—-p - Ak - 1Dx).

4. OPTIMAL SCHEDULES FOR PERIODIC PM

To design the optimal schedules for the periodic PM, we need to find an optimal PM

period x" and an optimal number N * of PM needed before replacing the system by a
new one. The decision criterion to adopt is to minimize the expected cost rate during the
life cycle of the system.

4.1. PM period x is known
We first consider the case when the PM period x is known. In order to determine the

optimal N * which minimizes C(x,N) of (3.2), we solve the following two inequalities for N .
C(x,N+1)>C(x,N) and C(x,N}<C(x,N-1).

It can easily be shown from (3.2) that C(x,N +1)2C(x,N) implies
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N x c., -C
> (et @ - 7i (Ot 2 -2 4.1
k=00 Cmr

Similarly, the inequality C(x,N)<C(x,N-1) implies

N X Cre - Cpm
kZO [rn @) =7 O)dt < ————. (4.2)
=00 mr

N X
Let Lo, N)= Y [[¥n1 @) — 7 (O)de . Then L(x,0) =0 and by combining (4.1) and
k=00
(4.2), we have the inequalities
C,-C C,,-C
ZPY and L(x,N~1) < ———P
mr mr
In order to prove the existence and uniqueness of the optimal N, we need to prove
that L(x, N) is increasing in N and goes to infinity. Instead of showing it directly, we use

L(x,N)>

the consequence discussed by Nakagawa(1986) to find the optimal number of PM’s, N * ,
which minimizes the expected cost rate per unit time.
Suppose that the period x is known. Nakagawa(1986) shows that if yj(¢) is

increasing in k and y y (f) goes to infinity as N goes to infinity then there exists a finite

and unique N * which minimizes C (x, N)for a given x.

Theorem 4.1. Let y; (1) =h(t + (k-1)x) - P, h({(k —1)x) . Then

(1) For any positive integer k, v (£) < yz41(t) forall O<t<x.
(i) lim Yy (t)y=o0 forall t>0
N—ow

Proof : Forall 0<¢<x,

Vi1 (D) =7 (O = h(t + kx) = pphkx) ~ [h(t + (k - 1)x) = pp_h((k —1)x)]

=[h(t + kx) = h{t + (k = D)x)] = [ pp h(kx) = py 1Ak = 1x)] 2 0.

The last inequality holds since /() is convex and strictly increasing in ¢ > 0.

And  yu()=h(t+(N-1x) = ppytA(N -Dx)> (1= py_1)H{(N -1)x) becomes
infinity as N —» oo since h(¢) goes to infinity as t goes to infinity.

4.2. Number of PM N is known )
In this case, we assume that the number of PM’s conducted before replacement, NV, is

known. In order to find the optimal PM period x for a given N which minimizes
C(x, N), given in (3.2), we differentiate C(x, N} with respect to x and set it equal to 0.
Then, we have
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> | @ LD gt 1y 0 - Ty L @)

k=0, o @* 0

} ( - I)Cpm + Cre
C!?lr

where y; (1) =h(t + (k - Dx)— P, h((k —1Dx) .
Let g(x) and C denote the left-hand side and the right-hand side of (4.3),

respectively. Then
sign

9 C Ny = g)-C,
dx

where g(0)=0 and C >0. To prove the main result, we first need to prove that
g(x) is an increasing function of x>0 .

Nakagawa(1986) also shows that if y; (¢)is differentiable and strictly increasing to

infinity as ¢ goes to infinity then there exists a finite and unique x* which minimizes
C(x, N)for a given N.

Theorem 4.2. Let y()=h(t+(k-Dx)-p, h({(k-1x) . Then y, (@) is

differentiable and strictly increasing to infinity as ¢ goes to infinity

Proof: Since A(t) is differentiable, it is clear that y, (¢) is differentiable. And since A(¢)
is strictly increasing to infinity, y, (¢) is strictly increasing to infinity as ¢ goes to infinity.

5. NUMERICAL EXAMPLE

Suppose that the failure time distribution F is Weibull distribution with a scale
parameter A and a shape parameter 8. The failure rate is 4(f) = ﬁ,%ﬂ 1B for [ >0 and

t>0. We assume that »=1.
As an improvement factor, we take the following age dependent function of & .

Pk —e 2k for k= L2,K ,N
The cost for minimal repair (C,,,. ) and cost for PM (C,,, ) are assumed to be 1 and

1.5, respectively.

5.1. Optimal PM schedule when PM period x is known.

Straightforward computation yields
L(x,N)

i xﬁ{N[(N”)ﬁ NP~ py NP SIRP -8 e k- ]}' Y
k=1
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The value of N'* is obtained by solving the following two inequalities simultaneously.

o —C

C,,-C C
Lix,Ny>—"_"P" and L(x,N-1)<———"" (5.2)

mr mr

Table 5.1 and 5.2 present the values of N* for various combinations of x and C,,
when the failure time distribution is Weibull distribution with f=2.0 and =25,
respectively. As for C,, and x , we take C,,=3.0 to 15.0(2) so that the ratio
(Cre =Cppu)/ Cpyy varies 2 to 10(2) and take x=0.1 to 0.9(0.2). It is apparent from

both Table 5.1 and 5.2 that the value of N* increases as the cost for replacement gets

higher and the PM period gets shorter. And it is also noted that the values of N * for the

case of £ =2.5 are smaller than the values of N * for the case of £=2.0.1It is quiet
natural since the wear-out speed for the case of f=2.5 si faster than that of £=2.0.

Table 5.1.Values of N~ (listed in parenthesis) and corresponding expected cost rate
C(x,N *) for given x when the failure time distribution is Weibull distribution

with £=2.0.
Cre X
0.1 0.3 0.5 0.7 0.9

3 12 4 3 2 2
17.4469 7.4231 5.4323 4.5196 4.1782
5 19 6 4 3 2
18.7402 8.7263 6.7051 5.8293 5.2893
. 23 8 5 3 3
19.6897 9.6781 7.6639 6.7817 6.3005
9 27 9 5 4 3
20.4764 10.4657 8.4639 7.5586 7.0413
1 31 10 6 4 3
21.1633 11.1558 9.1365 8.2729 7.7820
13 34 11 7 5 4
21.7812 11.7750 9.7599 8.8780 8.3804
5 37 12 7 5 4
22.3477 12.3409 10.3313 - 9.4494 8.9359
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Table 5.2.Values of N* (listed in parenthesis) and corresponding expected cost rate
C(x,N *) for given x when the failure time distribution is Weibull distribution

with #=25.
Cre X
0.1 0.3 0.5 0.7 0.9

3 10 3 2 2 1
17.4984 7.4949 5.4402 4.7717 4.1871
5 14 5 3 2 2
19.1554 9.1538 7.1153 6.2003 5.8816
. 17 6 3 2 2
20.4509 10.4566 8.4486 7.6289 6.9927
9 19 6 4 3 2
21.5655 11.5677 9.5342 8.6661 8.1038
1 21 7 4 3 2
22.5662 12.5551 10.5342 9.6185 9.2150
13 23 8 5 3 3
23.4874 13.4993 11.5170 10.5709 10.2293
05 24 8 5 3 3
24.3424 14.3326 12.3170 11.5233 10.9701

5.2. Optimal PM schedule when number of PM N is known.
When p; = e 2k for k= 1,2,A ,N, by solving the equation (4.3) for x , we obtain

1
B
) N-1C,, +C
e (N =DCpp +Cpe . (5.3)

N
e e

The values of x~ and its corresponding expected cost rate C(x*,N ) are listed for
N =1 to 30(5) and C,, =3.0 to 15(2) in Table 5.3 and 5.4 when when the failure time
distribution is Weibull distribution with f=2.0 and f=2.5, respectively. Both Table

5.3 and 5.4 show that as N increases, the value of x" gets shorter for fixed C,,, while

the value of x" increases when the replacement of the system costs higher. It suggests that
when the system is more expensive to replace and the number of PM’s required before
replacement is fixed, the PM should be done less frequently to reduce the cost of
conducting the periodic PM. And it is also noted that the optimal periods for the case of
S =2.5 are shorter than the values for the case of S =2.0. It is due to the different wear-

out speed.
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Table 5.3. Values of x* (listed in upper cell) and corresponding expected cost rate
C(x, N")(listed in lower cell) for given N when the failure time distribution

is Weibull distribution with f =2.0.

N Cre
3 5 7 9 11 13 15
| 1.7321 2.2361 2.6458 3.0000 33166 3.6056 3.8730
3.4641 44721 5.2915 6.0000 6.6332 7.2111 7.7460
5 0.6044 0.6682 0.7264 0.7803 0.8306 0.8782 0.9232
5.9565 6.5851 7.1588 7.6898 8.1864 8.6545 9.0986
10 0.4069 0.4309 0.4536 0.4752 0.4959 0.5157 0.5348
8.1093 8.5867 9.0390 9.4696 9.8816 10.2770 10.6577
15 0.3269 0.3402 0.3531 0.3654 0.3774 0.3890 0.4003
9.7901 10.1898 10.5745 10.9456 11.3046 11.6525 11.9903
20 0.2808 0.2895 0.2980 0.3063 0.3144 0.3222 0.3299
11.2199 11.5706 11.9110 12.2419 12.5641 12.8783 13.1849
55 0.2499 0.2562 0.2624 0.2684 0.2743 0.2801 0.2857
12.4864 12.8025 13.1111 13.4125 13.7073 13.9959 14.2787
30 0.2273 0.2322 0.2369 0.2416 0.2461 0.2506 0.2550
13.6354 13.9256 14.2098 14.4885 14.7619 15.0303 15.2940

Table 5.4. Values of x" (listed in upper cell) and corresponding expected cost rate
C(x, N")(listed in lower cell) for given ¥ when the failure time distribution

is Weibull distribution with f=2.5.

N Cre
3 5 7 9 11 13 15
! 1.3195 1.6186 1.8518 2.0477 2.2188 2.3721 25119
3.7893 5.1483 6.3001 7.3254 8.2627 9.1338 9.9527
5 0.4110 0.4454 0.4762 0.5042 0.5301 0.5542 0.5769
7.2988 8.2326 9.1006 9.9165 10.6899 11.4276 12.1349
10 0.2611 0.2733 0.2848 0.2956 0.3059 0.3156 0.3249
10.5316 11.2800 11.9966 12.6857 13.3507 13.9944 14.6188
15 0.2021 0.2087 0.2150 0.2210 0.2268 0.2324 0.2377
13.1920 13.8410 14.4703 15.0819 15.6774 16.2582 16.8254
20 0.1690 0.1732 0.1773 0.1812 0.1850 0.1887 0.1923
15.5318 16.1162 16.6868 17.2447 17.7907 18.3259 18.8508
25 0.1473 0.1502 0.1531 0.1559 0.1587 0.1613 0.1639
17.6561 18.1940 18.7214 19.2391 19.7477 20.2477 20.7395
10 0.1317 0.1339 0.1361 0.1382 0.1403 0.1423 0.1443
19.6218 20.1239 20.6178 21.1039 21.5827 22.0545 22.5196
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