• Title/Summary/Keyword: existence and uniqueness solution

Search Result 171, Processing Time 0.023 seconds

EXISTENCE-AND-UNIQUENESS AND MEAN-SQUARE BOUNDEDNESS OF THE SOLUTION TO STOCHASTIC CONTROL SYSTEMS

  • Lu, Peilin;Cao, Caixia
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.513-522
    • /
    • 2013
  • This paper mainly deals with the stochastic control system, the existence and uniqueness of solutions and the behavior of solutions are investigated. Firstly, we obtain sufficient conditions which guarantee the existence and uniqueness of solutions to the stochastic control system. And then, boundedness of the solution to the system is achieved under mean-square linear growth condition.

EXISTENCE AND UNIQUENESS OF A SOLUTION FOR FIRST ORDER NONLINEAR LIOUVILLE-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

  • Nanware, J.A.;Gadsing, Madhuri N.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1011-1020
    • /
    • 2021
  • In this paper, first order nonlinear Liouville-Caputo fractional differential equations is studied. The existence and uniqueness of a solution are investigated by using Krasnoselskii and Banach fixed point theorems and the method of lower and upper solutions. Finally, an example is given to illustrate our results.

LOCAL EXISTENCE AND GLOBAL UNIQUENESS IN ONE DIMENSIONAL NONLINEAR HYPERBOLIC INVERSE PROBLEMS

  • Choi, Jong-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.593-606
    • /
    • 2002
  • We prove local existence and global uniqueness in one dimensional nonlinear hyperbolic inverse problems. The basic key for showing the local existence of inverse solution is the principle of contracted mapping. As an application, we consider a hyperbolic inverse problem with damping term.

EXISTENCE, UNIQUENESS AND STABILITY OF IMPULSIVE STOCHASTIC PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

  • Anguraj, A.;Vinodkumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.739-751
    • /
    • 2010
  • This article presents the result on existence, uniqueness and stability of mild solution of impulsive stochastic partial neutral functional differential equations under sufficient condition. The results are obtained by using the method of successive approximation.

MOMENT ESTIMATE AND EXISTENCE FOR THE SOLUTION OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATION

  • Chen, Huabin;Wan, Qunjia
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the existence and uniqueness for the global solution of neutral stochastic functional differential equation is investigated under the locally Lipschitz condition and the contractive condition. The implicit iterative methodology and the Lyapunov-Razumikhin theorem are used. The stability analysis for such equations is also applied. One numerical example is provided to illustrate the effectiveness of the theoretical results obtained.

UNIQUENESS OF POSITIVE SOLUTIONS FOR PREDATOR-PREY INTERACTING SYSTEMS WITH NONLINEAR DIFFUSION RATES

  • Ahn, Inkyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • In general, the positive solution to biological reaction-diffusion equations is not unique. In this paper, we state the sufficient and necessary conditions of the existence of positive solutions, and give and the proof for the uniqueness of positive solutions for a certain elliptic interacting system.

  • PDF

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

AN EXISTENCE AND UNIQUENESS THEOREM OF STOCHASTIC DIFFERENTIAL EQUATIONS AND THE PROPERTIES OF THEIR SOLUTION

  • BAE, MUN-JIN;PARK, CHAN-HO;KIM, YOUNG-HO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.491-506
    • /
    • 2019
  • In this paper, we show the existence and uniqueness of solution to stochastic differential equations under weakened $H{\ddot{o}}lder$ condition and a weakened linear growth condition. Furthermore, the properties of their solutions investigated and estimate for the error between Picard iterations $x_n(t)$ and the unique solution x(t) of SDEs.

The existence and uniqueness of solution for the nonlinear fuzzy differential equations with nonlocal initial condition (비국소 초기 조건을 갖는 비선형 퍼지 미분방정식에 대한 해의 존재성과 유일성)

  • 박종서;김선유;강점란;권영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.715-719
    • /
    • 2001
  • In this paper, we study the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equations with nonlocal initial condition in E$^{2}$$_{N}$

  • PDF

EXISTENCE AND UNIQUENESS OF SQUARE-MEAN PSEUDO ALMOST AUTOMORPHIC SOLUTION FOR FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • A.D. NAGARGOJE;V.C. BORKAR;R.A. MUNESHWAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.923-935
    • /
    • 2023
  • In this paper, we will discuss existence of solution of square-mean pseudo almost automorphic solution for fractional stochastic evolution equations driven by G-Brownian motion which is given as c0D𝛼𝜌 Ψ𝜌 = 𝒜(𝜌)Ψ𝜌d𝜌 + 𝚽(𝜌, Ψ𝜌)d𝜌 + ϒ(𝜌, Ψ𝜌)d ⟨ℵ⟩𝜌 + χ(𝜌, Ψ𝜌)dℵ𝜌, 𝜌 ∈ R. Furthermore, we also prove that solution of the above equation is unique by using Lipschitz conditions and Cauchy-Schwartz inequality. Moreover, examples demonstrate the validity of the obtained main result and we obtain the solution for an equation, and proved that this solution is unique.