• Title/Summary/Keyword: exact order

Search Result 1,356, Processing Time 0.024 seconds

Nonlinear Time-Varying Control Based on Differential Geometry

  • Lee, Jong-Yong;Jung, Kye-dong;Cho, Seongsoo;Strzelecki, Michat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • This paper presents a study on nonlinear time varying systems based on differential geometry. A brief introduction about controllability and involutivity will be presented. As an example, the exact feedback linearization and the approximate feedback linearization are used in order to show some application examples.

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

Approximate Cell Loss Performance in ATM Networks: In Comparison with Exact Results

  • Lee, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.489-495
    • /
    • 2000
  • In this paper we propose an approximate method to estimate the cell loss probability(CLP) due to buffer overflow in ATM networks. The main idea is to relate the buffer capacity with the CLP target in explicit formula by using the approximate upper bound for the tail distribution of a queue. The significance of the proposition lies in the fact that we can obtain the expected CLP by using only the source traffic data represented by mean rate and its variance. To that purpose we consider the problem of estimating the cell loss measures form the statistical viewpoint such that the probability of cell loss due to buffer overflow does not exceed a target value. In obtaining the exact solution we use a typical matrix analytic method for GI/D/1B queue where B is the queue size. Finally, in order to investigate the accuracy of the result, we present both the approximate and exact results of the numerical computation and give some discussion.

  • PDF

An Exact Algorithm for the vehicle scheduling problem with multiple depots and multiple vehicle types (복수차고 복수차중 차량 일정 문제의 최적 해법)

  • 김우제;박우제
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 1988
  • This vehicle scheduling problem with multiple depots and multiple vehicle types (VMM) is to determine the optimal vehicle routes to minimize the total travel costs. The object of this paper is to develope an exact algorithm for the VMM. In this paper the VMM is transformed into a mathematical model of the vehicle problem with multiple depots. Then an efficient branch and bound algorithm is developed to obtain an exact solution for this model. In order to enhance the efficiency, this algorithm emphasizes the follows; First, a heuristic algorithm is developed to get a good initial upper bound. Second, an primal-dual approach is used to solve subproblems which are called the quasi-assignment problem, formed by branching strategy is presented to reduce the number of the candidate subproblems.

  • PDF

A New Exact Algorithm Using the Stair Structure for the Pallet Loading Problem (계단 구조를 이용한 팔레트적재문제의 새로운 해법)

  • Ji, Yeong-Geun;Jin, Go-Whan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.43-53
    • /
    • 2009
  • The pallet loading problem(PLP) requires the best orthogonal layout that loads the maximum number of identical boxes(small rectangle) onto a pallet(large rectangle). Since the high pallet utilization saves the distribution and storage costs, many heuristic and exact algorithms have been developed so far. Martins and Dell have found the optimal layouts for the all PLPs less than or equal to 100 boxes except for only 5 problems in their recent research. This paper defines the 'stair structure' and proposes a new exact algorithm applying it. In order to show the priority of the proposed algorithm, computational results are compared to previous algorithms and the optimal layouts for the S unsolved problems are given.

Classes of exact solutions for several static and dynamic problems of non-uniform beams

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper, an analytical procedure for solving several static and dynamic problems of non-uniform beams is proposed. It is shown that the governing differential equations for several stability, free vibration and static problems of non-uniform beams can be written in the from of a unified self-conjugate differential equation of the second-order. There are two functions in the unified equation, unlike most previous researches dealing with this problem, one of the functions is selected as an arbitrary expression in this paper, while the other one is expressed as a functional relation with the arbitrary function. Using appropriate functional transformation, the self-conjugate equation is reduced to Bessel's equation or to other solvable ordinary differential equations for several cases that are important in engineering practice. Thus, classes of exact solutions of the self-conjugate equation for several static and dynamic problems are derived. Numerical examples demonstrate that the results calculated by the proposed method and solutions are in good agreement with the corresponding experimental data, and the proposed procedure is a simple, efficient and exact method.

Study on Effective Lane Detection Using Hough Transform and Lane Model (허프변환과 차선모델을 이용한 효과적인 차선검출에 관한 연구)

  • Kim, Gi-Seok;Lee, Jin-Wook;Cho, Jae-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.34-36
    • /
    • 2009
  • This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.

  • PDF

Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2019
  • In this paper we present geometrically exact Kirchhoff's initially curved planar beam model. The theoretical formulation of the proposed model is based upon Reissner's geometrically exact beam formulation presented in classical works as a starting point, but with imposed Kirchhoff's constraint in the rotated strain measure. Such constraint imposes that shear deformation becomes negligible, and as a result, curvature depends on the second derivative of displacements. The constitutive law is plasticity with linear hardening, defined separately for axial and bending response. We construct discrete approximation by using Hermite's polynomials, for both position vector and displacements, and present the finite element arrays and details of numerical implementation. Several numerical examples are presented in order to illustrate an excellent performance of the proposed beam model.

Exact Free Vibration Analysis of Straight Thin-walled Straight Beams (직선 박벽보에 대한 엄밀한 자유진동해석)

  • 김문영;윤희택;나성훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.358-365
    • /
    • 2000
  • For the general case of loading conditions and boundary conditions, it is very difficult to obtain closed form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. In consequence, most of previous finite element formulations are introduce approximate displacement fields to use shape functions as Hermitian polynomials, and so on. The Purpose of this study is to presents a consistent derivation of exact dynamic stiffness matrices of thin-walled straight beams, to be used ill tile free vibration analysis, in which almost types of boundary conditions are exist An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element of nonsymmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequency is evaluated for the thin-walled straight beam structure, and the results are compared with analytic solutions in order to verify the accuracy of this study.

  • PDF