• 제목/요약/키워드: evolutionary game theory

검색결과 23건 처리시간 0.019초

게임 이론에 기반한 공진화 알고리즘 (Game Theory Based Co-Evolutionary Algorithm (GCEA))

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.253-261
    • /
    • 2004
  • 게임 이론은 의사 결정 문제와 관련 된 연구와 함께 정립 된 수학적 분석법으로써 1928년 Von Neumann이 유한개의 순수전략이 존재하는 2인 영합게임은 결정적(deterministic)이라는 것을 증명함으로써 수학적 기반을 정립하였고 50년대 초, Nash는 Von Neumann의 이론을 일반화하는 개념을 제안함으로써 현대적 게임이론의 장을 열었다. 이후 진화 생물학 연구자들에 의해 고전적인 게임 이론의 가정에 해당하는 참가자들의 합리성(rationality) 대신 다윈 선택(Darwinian selection)에 의해 게임의 해를 탐색하는 것이 가능하다는 것이 밝혀지게 되었고 진화 생물학자 Maynard Smith에 의해 진화적 안정 전략(Evolutionary Stable Strategy: ESS)의 개념이 정립되면서 현대적 게임 이론으로써 진화적 게임 이론이 체계화 되었다. 한편 이와 같은 진화적 게임 이론에 관한 연구와 함께 생태계의 공진화를 이용한 컴퓨터 시뮬레이션이 1991년 Hillis에 의해 처음으로 시도되었으며 Kauffman은 다른 종들 간의 공진화적 동역학(dynamics)을 분석하기 위한 NK 모델을 제안하였다. Kauffman은 이 모델을 이용하여 공진화 현상이 어떻게 정적 상태(static state)에 이르며 이 상태들은 게임 이론에서 소개되어진 내쉬 균형이나 ESS에 해당한다는 것을 보여주었다. 이후, 몇몇 연구자들 게임 이론과 진화 알고리즘에 기반한 연산 모델들을 제시해 왔으나 실용적인 문제의 적용에 대한 연구는 아직 미흡한 편이다. 이에 본 논문에서는 게임 이론에 기반 한 공진화 알고리즘을(Game theory based Co-Evolutionary Algorithm: GCEA) 제안하고 이 알고리즘을 이용하여 공진화적인 문제들을 효과적으로 해결할 수 있음을 확인하는 것을 목표로 한다.

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

  • Sim, Kwee-Bo;Lee, Dong-Wook;Kim, Ji-Yoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.463-474
    • /
    • 2004
  • Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

Game Model Based Co-evolutionary Solution for Multiobjective Optimization Problems

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.

온라인 게임 기업의 제품 다원화를 위한 제휴 전략 진화에 관한 연구 (The Study on Evolutionary Process of Online-Game Companies' Alliance Strategy for Product Diversification)

  • 장용호;정원조
    • 한국게임학회 논문지
    • /
    • 제11권2호
    • /
    • pp.57-68
    • /
    • 2011
  • 본 연구는 새롭게 탄생한 온라인 게임 기업이 시장 성장주기(도입기-성장기-성숙기)에 따라 어떻게 다원화 전략을 행하여 왔는가를 자원기반이론과 진화이론의 관점에서 실증적 사례 분석을 통해 그 역사적 진행 과정을 체계적으로 분석하였다. 초기 온라인 게임 기업들은 진입 조건(장르, 기술력, 이용자특성)에 따라 다른 전략(기술역량기반, 서비스역량기반)을 통해 성장하였다. 이후 성장기에 이들 기업들은 제품 다원화를 위해 자원기반(기술기반전략, 서비스기반전략)에 따라 경로의존적 제휴 전략(보완적, 대체적 제휴)을 수행하여왔다. 그러나 성숙기에 이들 기업들은 기존 경로의존적 전략을 뛰어넘어 이용가능한 모든 자원 역량을 동원하는 통합 전략을 자연적으로 선택함으로서 시장 성장주기에 탄력적으로 적응하였다. 이러한 분석 결과는 진화이론과 자원기반이론을 복합적으로 적용하여 새롭게 탄생한 산업에서 시장의 단계별 성장주기에 따라 온라인 게임 기업의 제휴 전략 패턴이 어떻게 자기조직화 하고 있는지 분석함으로써 새로운 산업적, 정책적, 이론적 모델이 요구되고 있음을 제시하고 있다.

Analyzing the Evolutionary Stability for Behavior Strategies in Reverse Supply Chain

  • Tomita, Daijiro;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.44-57
    • /
    • 2015
  • In recent years, for the purpose of solving the problem regarding environment protection and resource saving, certain measures and policies have been promoted to establish a reverse supply chains (RSCs) with material flows from collection of used products to reuse the recycled parts in production of products. It is necessary to analyze behaviors of RSC members to determine the optimal operation. This paper discusses a RSC with a retailer and a manufacturer and verifies the behavior strategies of RSC members which may change over time in response to changes parameters related to the recycling promotion activity in RSC. A retailer takes two behaviors: cooperation/non-cooperation in recycling promotion activity. A manufacturer takes two behaviors: monitoring/non-monitoring of behaviors of the retailer. Evolutionary game theory combining the evolutionary theory of Darwin with game theory is adopted to clarify analytically evolutionary outcomes driven by a change in each behavior of RSC members over time. The evolutionary stable strategies (ESSs) for RSC members' behaviors are derived by using the replicator dynamics. The analysis numerically demonstrates how parameters of the recycling promotion activity: (i) sale promotion cost, (ii) monitoring cost, (iii) compensation and (iv) penalty cost affect the judgment of ESSs of behaviors of RSC members.

진화 게임을 이용한 VMS 정보에 따른 운전자의 행태 연구 (A Study of Driver's Response to Variable Message Sign Using Evolutionary Game Theory)

  • 김주영;나성용;이승재;김영호
    • 대한교통학회지
    • /
    • 제32권5호
    • /
    • pp.554-566
    • /
    • 2014
  • VMS의 운영적인 제공 목표는 운전자들의 경로선택을 통한 효율적인 시스템을 운영하는 것이다. VMS 정보 제공문제를 포함한 교통문제들은 게임이론을 통해 모형화 될 수 있지만 대다수의 연구들은 게임이론을 통하여 동일한 정보를 제공받더라도 운전자의 반응이 다양하게 나타나는 점을 반영하지 못하였다. 본 연구는 VMS교통정보에 대한 운전자들의 정보에 대한 반응을 진화적 게임모형을 활용하여 분석하고자 하였다. 실제 소통정보 및 VMS 정보 제공이력을 기초로 VMS정보에 따른 운전자들의 행동특성을 진화 게임이론에 적용해보았다. 분석결과 운전자들의 경로선택 비율은 VMS정보를 통한 기대통행시간과 진입교통량에 따라 달라지는 보수에 의해 결정되었다. VMS 정보는 진화적 게임의 보수에 영향을 미친다. 운전자들이 최초 어떠한 비율로 경로를 선택하더라도, 주기가 지남에 따라 진화적으로 안정한 상태로 수렴될 수 있는 것을 확인하였다. 또한 VMS정보가 과도한 통행시간이나 과소 통행시간을 제공할 경우 진화적으로 안정화되지 못하여 혼란이 가중될 수 있는 것으로 분석되었다. 결론적으로 교통문제와 같이 다른 운전자의 전략을 정확히 예측할 수 없고, 운전자 집단 간의 반복, 경험에 의해 합리적인 정보판단을 수행하는 경우, 진화 게임이론을 통해 전략적인 VMS 정보를 제공할 수 있을 것이라 기대할 수 있을 것이다.

Evolutionary game theory-based power control for uplink NOMA

  • Riaz, Sidra;Kim, Jihwan;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2697-2710
    • /
    • 2018
  • Owing to the development of Internet of Things (IoT), the fifth-generation (5G) wireless communication is going to foresee a substantial increase of mobile traffic demand. Energy efficiency and spectral efficiency are the challenges in a 5G network. Non-orthogonal multiple access (NOMA) is a promising technique to increase the system efficiency by adaptive power control (PC) in a 5G network. This paper proposes an efficient PC scheme based on evolutionary game theory (EGT) model for uplink power-domain NOMA system. The proposed PC scheme allows users to adaptively adjusts their transmit power level in order to improve their payoffs or throughput which results in an increase of the system efficiency. In order to separate the user signals, a successive interference cancellation (SIC) receiver installed at the base station (BS) site. The simulation results demonstrate that the proposed EGT-based PC scheme outperforms the traditional game theory-based PC schemes and orthogonal multiple access (OMA) in terms of energy efficiency and spectral efficiency.

Optimal Price Strategy Selection for MVNOs in Spectrum Sharing: An Evolutionary Game Approach

  • Zhao, Shasha;Zhu, Qi;Zhu, Hongbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3133-3151
    • /
    • 2012
  • The optimal price strategy selection of two bounded rational cognitive mobile virtual network operators (MVNOs) in a duopoly spectrum sharing market is investigated. The bounded rational operators dynamically compete to sell the leased spectrum to secondary users in order to maximize their profits. Meanwhile, the secondary users' heterogeneous preferences to rate and price are taken into consideration. The evolutionary game theory (EGT) is employed to model the dynamic price strategy selection of the MVNOs taking into account the response of the secondary users. The behavior dynamics and the evolutionary stable strategy (ESS) of the operators are derived via replicated dynamics. Furthermore, a reward and punishment mechanism is developed to optimize the performance of the operators. Numerical results show that the proposed evolutionary algorithm is convergent to the ESS, and the incentive mechanism increases the profits of the operators. It may provide some insight about the optimal price strategy selection for MVNOs in the next generation cognitive wireless networks.

Generation of security system defense strategies based on evolutionary game theory

  • Bowen Zou;Yongdong Wang;Chunqiang Liu;Mingguang Dai;Qianwen Du;Xiang Zhu
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3463-3471
    • /
    • 2024
  • The physical protection systems of Nuclear Power Plant are utilized to safeguard targets against intrude by attacker. As the methods employed by attackers to intrude Nuclear Power Plant become increasingly complex and diverse, there is an urgent need to identify optimal defense strategies to interrupt adversary intrusions. This paper focuses on studying the defense of security personnel against adversary intrusions and utilizes an evolutionary game approach to select the optimal defense decisions for physical protection systems. Under the assumption of bounded rationality for both the attacker and defender, the paper constructs replication dynamic equations for attack and defense strategies, investigating the process of strategy selection and the stability of evolution. Finally, a minimal model is proposed to validate the feasibility of utilizing the evolutionary game model for defense strategy selection.

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.491-496
    • /
    • 2002
  • 다목적 함수 최적화 문제(Multi-objective Optimization Problems : MOPs)는 공학적인 문제를 풀고자 할 때 자주 접하게 되는 대표적인 문제 중 하나이다. 공학자들이 다루는 실세계 최적화 문제들은 몇 개의 경합하는 목적 함수(objective function) 들로 이루어진 문제일 경우가 많다. 본 논문에서는 다목적 함수 최적화 문제의 정의를 소개하고 이 문제를 풀기 위한 몇 가지 접근법을 소개한다. 먼저 서론에서는 파레토 최적해(Pareto optimal solution) 의 개념을 이용한 기존의 최적화 알고리즘과 이와는 달리 게임 이론(Game Theory) 으로부터 도출된 최적화 알고리즘인 내쉬 유전자 알고리즘(Nash Genetic Algorithm Nash GA) 그리고 본 논문에서 제안하는 공진화 알고리즘의 기반이 되는 진화적 안정 전략 (Evolutionary Stable Strategy : ESS) 의 이론적 배경을 소개한다. 또 본론에서는 다목적 함수 최적화 문제와 파레토 최적 해의 정의를 소개하고 다목적 함수 최적화 문제를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론(Evolutionary Game Theory : EGT) 에 적용시킨 내쉬 유전자 알고리즘과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 가지 알고리즘을 대표적인 다목적 함수 최적화 문제에 적용하고 결과를 비교 검토함으로써 진화적 게임 이론의 두 가지 아이디어 내쉬의 균형(Equilibrium) 과 진화적 안정전략 에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해 를 탐색할 수 있음을 확인한다.