• Title/Summary/Keyword: eutectic SnPb

Search Result 63, Processing Time 0.029 seconds

Effective Charge Number and Critical Current Density in Eutetic SnPb and Pb Free Flip Chip Solder Bumps (SnPb와 무연 플립칩 솔더의 유효전하수와 임계전류밀도)

  • Chae, Kwang Pyo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.49-54
    • /
    • 2005
  • The effective charge number and the critical current density of electromigration in eutetic SnPb and Pb Free $(SnAg_{3.8}Cu_{0.7)$ flip chip solder bumps are studied. The effective charge number of electromigration in eutectic SnPb solder is obtained as 34 and the critical current density is $j=0.169{\times}({\delta}_{\sigma}/{\delta}_x})\;A/cm^2,\;where\;({\delta}_{\sigma}/{\delta}_x})$ is the electromigration-induced compressive stress gradient along the length of the line. While the effect of electromigration in Pb free solder is much smaller than that in eutectic SnPb, the product of diffusivity and effective charge number $DZ^{\ast}$ has been assumed as $6.62{\times}10^{-11}$. The critical length for electromigration are also discussed.

Electromigration charateristics of eutectic SnPb and SnAgCu thin stripe lines (공정조성의 SnPb 및 SnAgCu 선형 솔더의 electromigration 특성 평가)

  • Yoon Min-Seung;Lee Shin-bok;Joo Young-Chang
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • Electromigration characteristics of $SnAg_3Cu_{0.7}$ and eutectic SnPb solder were studied using thin stripe-type test structures. Significant changes in the microstructure of two solders were observed after electromigration test, in which the temperature and the current density were varied from 90 to $110^{\circ}C$ and from $4.0\times10^4\;A/cm^2\;to\;9.2\times10^4\;A/cm^2$. In SnAgCu solders, hillocks were main]y observed near the anode end. From resistance measurements, it was calculated that the activation energy of the SnAgCu solder for electromigration was 1.04 eV And in eutectic SnPb without the effect of pads, while depleted region was found near cathode end, Sn-rich hillocks were observed near the anode end. During eutectic SnPb electromigration, it were observed that electromigration behavior had two migration modes.

  • PDF

In-situ Observation of Electromigration Behaviors of Eutectic SnPb Line (공정조성 SnPb 솔더에 대한 실시간 Electromigration 거동 관찰)

  • Kim Oh-Han;Yoon Min-Seung;Joo Young-Chang;Park Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.281-287
    • /
    • 2005
  • in-situ electromigration test was carried out for edge drift lines of eutectic SnPb solder using Scanning Electron Microscopy (SEM). The electromigration test for the eutectic SnPb solder sample was conducted at temperature of $90^{\circ}C$ and the current density of $6{\times}10^4A/cm^2$. Edge drift at cathode and hillock growth at anode were observed in-situ in a SEM chamber during electromigration test. It was clearly revealed that eutectic SnPb solder lines has an incubation stage before void formation during electromigration test, which seemed to be related to the void nucleation stage of flip chip solder electromigration behaviors.

  • PDF

Electromigration Behavior of Eutectic SnPb Solder (공정 조성의 SnPb 솔더에서의 Electromigration 거동)

  • 최재영;이상수;주영창
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • Electromigration characteristics of eutectic SnPb solder were studied using thin stripe-type test structures. Significant changes in the microstructure were observed after electromigration test, in which the temperature and the current density were varied from 80 to 100 $^{\circ}C$ and from 4.6${\times}$10$^4$A/$\textrm{cm}^2$ to 8.7${\times}$10$^4$A/$\textrm{cm}^2$. While voids or local thinning were found near the cathode end, hillocks were mainly observed near the anode end. From resistance measurements, it was calculated that the activation energy of the eutectic SnPb solder for electromigration was 0.77 eV. The dominant migrating element along the electron flow at 100$^{\circ}C$ was Pb.

Line Length Effect on Electromigration Characteristics of Eutectic SnPb Solder (공정 조성 SnPb 솔더의 배선 길이에 따른 electromigration 특성)

  • Lee, Yong-Duk;Lee, Jang-Hee;Yoon, Min-Seung;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.371-375
    • /
    • 2007
  • In-situ observation of electromigration behavior of eutectic SnPb solder was performed as a function of line length at $100^{\circ}C$, $6{\times}10^4A/cm$ condition in a scanning electron microscope chamber. The incubation time for edge drift and the edge drift velocity increase as line length increases, which are discussed with the void nucleation stage of solder bump and the electromigration back flux force, respectively. Finally, the existence of electromigration product (jL) and its line length dependency are also discussed.

Phase Transformation of Sn-Pb-Bi Solder for Photovoltaic Ribbon: A Real-time Synchrotron X-ray Scattering Study

  • Cho, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • The phase transformation of Sn-Pb-Bi solder for photovoltaic ribbon during soldering was studied using real-time synchrotron x-ray scattering. At room temperature, Sn and Pb crystal phases in the solder existed separately. By heating to $92^{\circ}C$, a new PbBi alloy crystal phase was formed, which grew further up to $160^{\circ}C$. The Sn crystal phase first started to melt at $160^{\circ}C$, and was mostly melted at $165^{\circ}C$. In contrast, the Pb and PbBi crystal phases started to melt at $165^{\circ}C$, and were mostly melted at $170^{\circ}C$. The useful result was obtained, that the solder's melting temperature decreased from $183^{\circ}C$ to $170^{\circ}C$ by addition of a small amount of Bi atoms to the eutectic Sn62-Pb38 (wt%) solder. Our study first revealed the detailed in-situ phase transformation of Sn-Pb-Bi solder during heating to the eutectic temperature. Considering the results of peel strength and hardness, adding 1 wt% of Bi atoms to the Sn62-Pb38 (wt%) solder produced an appropriate composition.

A Study on Low-Melting Temperature Sn-In (wt%) Pb-Free Solders for Photovoltaic Ribbons (태양광 리본용 저융점 Sn-In (wt%) 무연 솔더 연구)

  • Dong-Hyeon Shin;Seung-Han Lee;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.186-190
    • /
    • 2023
  • We studied the various characteristics of Sn-In (wt%) Pb-free solders for photovoltaic ribbon application. The solders near the eutectic composition of Sn48In52 (wt%) existed in InSn4 and In3Sn alloy phases, and in In crystal phase, but not in Sn crystal phase. In addition, the InSn4 phase (γ-alloy) existed separately from the In3Sn (β-alloy) and the In phase confirmed by an SEM-EDS-mapping. The melting temperature of the eutectic solder of Sn48In52 (wt%) was 119.2℃, and when the Sn content decreased in reference to the eutectic composition, it slightly increased to 121.4℃, but when the Sn content increased, it remained almost constant at 119.1℃. The peel strength of the ribbon plated with the Sn42In58 (wt%) solder was 38.7 N/mm2, and it tended to increase when the Sn content increased. The peel strength of the eutectic Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn51In49 (wt%) solder was 61.6 N/mm2 that was the highest.