Effective Charge Number and Critical Current Density in Eutetic SnPb and Pb Free Flip Chip Solder Bumps

SnPb와 무연 플립칩 솔더의 유효전하수와 임계전류밀도

  • 채광표 (건국대학교 광전자물리학과)
  • Published : 2005.10.01

Abstract

The effective charge number and the critical current density of electromigration in eutetic SnPb and Pb Free $(SnAg_{3.8}Cu_{0.7)$ flip chip solder bumps are studied. The effective charge number of electromigration in eutectic SnPb solder is obtained as 34 and the critical current density is $j=0.169{\times}({\delta}_{\sigma}/{\delta}_x})\;A/cm^2,\;where\;({\delta}_{\sigma}/{\delta}_x})$ is the electromigration-induced compressive stress gradient along the length of the line. While the effect of electromigration in Pb free solder is much smaller than that in eutectic SnPb, the product of diffusivity and effective charge number $DZ^{\ast}$ has been assumed as $6.62{\times}10^{-11}$. The critical length for electromigration are also discussed.

Keywords

References

  1. F. M. d'Heurle and R. Rosenberg, Physics of Thin Films, Academic, New York, NY, 1973, Vol.7, 257
  2. F. M. d'Heurle and P. S. Ho, in Thin FIlms: Interdiffusion and Reactions, J. M. Poate, K. N. Tu and J. W. Mayer ed., Wiley, Chichester, UK, 1978, 243-303
  3. P. S. Ho and T. Kwok: Rep. Frog. Phys. 52, 301 (1989)
  4. C. S. Chang, A. Oscilowski and R. C. Bracken: IEEE Circuits Devices Mag. 14, 45 (1998)
  5. M. Abtew and G. Selvaduray: Mater. Sci. Eng. 27, 95 (2000)
  6. J. Grazer: Int. Mater. Rev. 40, 65 (1995)
  7. P. T. Vianco and D. R. Frear: J. Mater. 45, 14 (1993) https://doi.org/10.1007/s10853-009-4030-6
  8. S. K. Kang and S. Purushothaman: J. Electron. Mater. 25, 1113 (1996)
  9. D. R. Frear and P. T. Vianco: Metall Trans. 25, 1509 (1994)
  10. J. W. Jang, P. G. Kim, K. N. Tu and M. Lee: J. Mater. Res. 14, 1 (1999)
  11. S. Brandenburg, and S. Yeh: in Proc. of the surface Mount Inter. Conf and Expo. San Jose, CA, USA, SMTA, Edina, MN, USA, 23-27 Aug. 1998, pp. 337-344
  12. C. K. Hu and H. B. Huntington: in Diffusion Phenorrena in Thin fllms and microelectronic Materials, D. Gupta and P.S. Ho, ed., Noyes, Park Ridge, NJ, 1998
  13. C. K. Hu, H. B. Huntington and G. R. Grunzalsky: Phys. Rev. B28, 579 (1983)
  14. H. M. Breitling and R. E. Hummel: J. Phys. Chem. Solids. 33, 845 (1972)
  15. C. Y. Liu, C. Chen, C. N. Liao and K. N. Tu: Appl. Phys. Lett. 75, 58 (1999)
  16. C. K. Hu and J. M. E. Harper: Mater. Chem. Phys. 52, 5 (1998)
  17. I. A. Blech: J. Appl. Phys. 47, 1203 (1976) https://doi.org/10.1063/1.322689
  18. I. A. Blech and C. Herring: Appl. Phys. Lett. 29, 131 (1976) https://doi.org/10.1063/1.89024
  19. T. Y. Lee, K. N. Tu, S. M. Kuo and D. R. Frear: J. Appl. Phys. 89, 3189 (2000)
  20. T. Y. Lee, K. N. Tu, and D. R. Frear: J. Appl. Phys. 90, 4502 (2001) https://doi.org/10.1063/1.1377023
  21. Everett C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius and H. Balkan: App. Phys. Lett. 80, 580 (2002)
  22. H. Gan and K. N. Tu: in Proc. of 52nd Electronic Components and Technology Conference 2002. (Cat.No.02CH37345). IEEE., Piscataway, NJ, USA, 2002, 1206-1212
  23. K. N. Tu, J. W. Mayer and L. C. Feldman: Electronic Thin Film Science, Macmillan, New York, 2002, Chap 14
  24. K. N. Tu: Phys. Rev. 45, 1409 (1992)
  25. D. Gupta, K. Vieregge and W. Gust: Acta mater. 47, 5 (1999)
  26. Q. T. Huynh, C. Y. Liu, Chih and K. N. Tu: J. Appl. Phys. 89, 4332 (2002) https://doi.org/10.1063/1.1357459
  27. C. Y. Liu, C. Chen and K. N. Tu: J. Appl. Phys. 88, 5703 (2000)
  28. H. B. Huntington: Diffusion in solid: Recent Developments, Academic, New York, 1961
  29. M. J. Azaz: Appl. Phys. Lett. 70, 2810 (1997)
  30. K. Zeng and K. N. Tu: Mater. Sci. and Eng. R38, 55 (2002)
  31. P. C. Wang, G. S. Cargill III, I. C. Noyan and C. K. Hu: Appl. Phys. Lett. 72, 1296 (1998)
  32. R. J. Klein Wassink: Soldering in Electronics, Electrochemical Society, New York, 1989, 166