• Title/Summary/Keyword: error propagation

Search Result 1,011, Processing Time 0.025 seconds

Doppler shift frequency estimation and compensation in underwater acoustic communication using triangle spread carrier technique (Triangle spread carrier 기법을 이용한 수중음향통신에서 도플러 천이 주파수 추정 및 보상 )

  • Chang-hyun Youn;Hyung-in Ra;Kyung-one Lee;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.169-180
    • /
    • 2023
  • The performance of underwater acoustic communication is greatly affected by multipath propagation and Doppler spread. This paper proposes a new communication technique, the Triangle Spread Carrier (TSC) technique, by modifying the existing Sweep Spread Carrier (SSC) technique that is strong in a multipath propagation environment. The proposed TSC technique is a form in which the up-chirp and down-chirp signals have repeated carriers, and each correlation function characteristic is used to estimate and correct the Doppler shift frequency of the receiving signal. To demonstrate the performance of the proposed TSC technique, we present the results of simulations using underwater channel simulators and sea trial conducted in the East Sea. When demodulating using only the estimated Doppler shift frequency as a result of the sea trial, the uncoded bit error rate was up to 0.194, but when the proposed method was applied, the uncoded bit error rate was reduced to 0.001.

dynamic localization of a mobile robot using a rotating sonar and a map (회전 초음파 센서와 지도를 이용한 이동 로보트의 동적 절대 위치 추정)

  • 양해용;정학영;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.544-547
    • /
    • 1997
  • In this paper, we propose a dynamic localization method using a rotating sonar and a map. The proposed method is implemented by using extended Kalman filter. The state equation is based on the encoder propagation model and the encoder error model, and the measurement equation is a map-based measurement equation using a rotating sonar sensor. By utilizing sonar beam characteristics, map-based measurements are updated while AMR is moving continuously. By modeling and estimating systematic errors of a differential encoder, the position is successfully estimated even the interval of the map-based measurement. Monte-Carlo simulation shows that the proposed global position estimator has the performance of a few millimeter order in position error and of a few tenth degrees in heading error and of compensating systematic errors of the differential encoder well.

  • PDF

Symbol Error Rate of 16-APSK Modulation (DVB-S2의 16-APSK 성능 분석)

  • Son, Jae-Seung;Lee, Yu-Sung;Park, Hyun-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.11-14
    • /
    • 2004
  • Digital Video Broadcasting - Satellite (DVB-S) [1] (EN 300 421(bibliography)) was introduced as a standard in 1994. However, by combing with higher order modulation, promise more powerful alternatives to the DVB-S / DVB-DSNG coding and modulation schemes. Variable rate coding and modulation (VCM) may employed to provide different levels of error protection to different service components. Adaptive coding and modulation (ACM) provides more exact channel protection and dynamic link adaptation to propagation conditions, targeting each individual receiving terminal. By these reasons, DVB-S2 introduced. This paper derives exact symbol error rate(SER) of 16-Amplitude Phase Shift Keying(APSK) modulation by using Craig's formula. 16-APSK modulation is used in DVB-S2. The difference between Union Bound and Craig's formula is 1.26dB in low SNR and 0.1dB in high SNR.

  • PDF

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

An Effective Mapping for a Mobile Robot using Error Backpropagation based Sensor Fusion (오류 역전파 신경망 기반의 센서융합을 이용한 이동로봇의 효율적인 지도 작성)

  • Kim, Kyoung-Dong;Qu, Xiao-Chuan;Choi, Kyung-Sik;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1040-1047
    • /
    • 2011
  • This paper proposes a novel method based on error back propagation neural networks to fuse laser sensor data and ultrasonic sensor data for enhancing the accuracy of mapping. For navigation of single robot, the robot has to know its initial position and accurate environment information around it. However, due to the inherent properties of sensors, each sensor has its own advantages and drawbacks. In our system, the robot equipped with seven ultrasonic sensors and a laser sensor navigates to map two different corridor environments. The experimental results show the effectiveness of the heterogeneous sensor fusion using an error backpropagation algorithm for mapping.

HAI Control for Speed Control of SPMSM Drive (SPMSM 드라이브의 속도제어를 위한 HAI 제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent(HAI) controller for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on HAI controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Adaptive FNN Controller for High Performance Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기)

  • 이정철;이홍균;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

Accuracy improvement of laser interferometer with neural network (신경회로망을 이용한 레이저 간섭계 정밀도 향상)

  • Lee, Woo-Ram;Heo, Gun-Hang;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.597-599
    • /
    • 2006
  • In this paper, we propose an artificial intelligence method to compensate the nonlinearity error which occurs in the heterodyne laser interferometer. Some superior properties such as long measurement range, ultra-precise resolution and various system set-up lead the laser interferometer to be a practical displacement measurement apparatus in various industry and research area. In ultra-precise measurement such as nanometer or subnanometer scale, however, the accuracy is limited by the nonlinearity error caused by the optical parts. The feedforward neural network trained by back-propagation with a capacitive sensor as a reference signal minimizes the nonlinearity error and we demonstrate the effectiveness of our proppsed algorithm through some experimental results.

  • PDF

A Low-Complexity CLSIC-LMMSE-Based Multi-User Detection Algorithm for Coded MIMO Systems with High Order Modulation

  • Xu, Jin;Zhang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1954-1971
    • /
    • 2017
  • In this work, first, a multiuser detection (MUD) algorithm based on component-level soft interference cancellation and linear minimum mean square error (CLSIC-LMMSE) is proposed, which can enhance the bit error ratio (BER) performance of the traditional SIC-LMMSE-based MUD by mitigating error propagation. Second, for non-binary low density parity check (NB-LDPC) coded high-order modulation systems, when the proposed algorithm is integrated with partial mapping, the receiver with iterative detection and decoding (IDD) achieves not only better BER performance but also significantly computational complexity reduction over the traditional SIC-LMMSE-based IDD scheme. Extrinsic information transfer chart (EXIT) analysis and numerical simulations are both used to support the conclusions.

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF