SPMSM 드라이브의 속도제어를 위한 HAI 제어

HAI Control for Speed Control of SPMSM Drive

李洪鈞^{*} · 李廷喆^{**} · 鄭東和^{*} (Hong-Gyun Lee · Jung-Chul Lee · Dong-Hwa Chung)

Abstract – This paper is proposed hybrid artificial intelligent(HAI) controller for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on HAI controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output.

A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Key Words : SPMSM drive, fuzzy control, neural network, HAI controller, estimation performance

1. 서 론

최근, SPMSM(Surface Permanent Magnet Synchronous Motor)은 높은 에너지를 갖는 영구자석을 사용하여 전동기 자체의 무게, 부피 및 가격을 줄일 수 있는 경제적인 장점 때문에 로봇, 전기자동차 및 엘리베이터 등 산업용 드라이브 의 적용분야에 호응을 받고 있다. SPMSM은 토크 및 전력 밀도가 높고 제어가 용이하며 효율 및 역률이 높은 특징을 가지고 있다.

산업현장에서는 고 품질과 고 생산성을 창출할 수 있는 다양한 자동화 및 전력전자 기기가 요구되고 있으며 이에 부응하여 고성능을 발휘할 수 있는 전동기 드라이브의 개발 이 필수적이다. SPMSM 드라이브의 적용분야에서는 일반적 으로 PI 제어기를 많이 사용하고 있다. 그러나 PI 제어기는 유도전동기의 비선형 때문에 고성능 제어에서 많은 문제점 이 나타나고 있다. 특히 외란, 속도 및 부하 등의 파라미터 가 변동할 경우 고성능 및 강인성 제어를 실현하기 어렵다. 드라이브의 양호한 성능을 얻기 위하여 적응제어가 연구되 었다. 적응제어는 부하토크 또는 관성과 같은 동작의 다양 한 변동에도 양호한 속도응답을 얻을 수 있으며 종래의 PI

* 正 會 員:順天大 工大 情報通信工學部 博士課程

** 正 會 員: 順天大 工大 情報通信工學部 博士

・ 교신저자,終身會員:順天大 工大 情報通信工學部 教授・工博
 E-mail: hwa777@sunchon.ac.kr
 接受日字: 2004年 7月 5日
 最終完了: 2005年 1月 28日

제어기 보다 매우 양호한 성능을 얻을 수 있다.[1] 이러한 적응제어는 STC(Self Tuning Control), MRAC(Model Reference Adaptive Control), SMC(Sliding Mode Control) 및 EKF(Extended Kalman Filter) 등의 다양한 기법들이 제시되었다.[2] 그러나 적응제어 기법은 수학적인 모델링에 기초를 두고 있으며 다량의 알고리즘 때문에 매우 복잡하 다. 이러한 문제점을 해결하기 위하여 퍼지제어기가 개발되 었으나 다양한 부하변동과 관성변화에 대하여 강인성의 응 답특성을 기대하기가 어려우며 만족할만한 성능을 얻을 수 없다.[3]

신경회로망은 드라이브의 파라미터 추정과 제어에 매우 유력한 기법으로 평가를 받았다.[4]-[5] 신경회로망은 일반 적인 벡터제어 방법과 비교하여 적응제어의 능력이 우수하 였다. 그러나 퍼지제어에서 나타나는 특성인 고성능 및 강 인성 제어에서는 취약한 문제점이 나타난다.

본 논문에서는 이러한 문제점을 감안하여 SPMSM 드라 이브의 속도 제어를 위하여 적응 퍼지제어와 신경회로망을 혼합 구성한 HAI(Hybrid Artificial Intelligent) 제어를 제시 한다. FNN 제어기는 퍼지를의 전반부와 후반부를 클러스터 링 방법과 다층 신경회로망으로 구성한다. 퍼지제어에서 나 타나는 장점인 고성능 및 강인성 제어를 얻을 수 있으며 신 경회로망에서 나타나는 장점인 고도의 적응제어의 능력을 얻을 수 있다. 더욱 성능 향상을 위하여 기준모델에 기초한 적응 메카니즘의 기법을 적용한다.[6] FNN 제어기의 출력과 적응 퍼지제어의 출력을 합하여 최종 출력을 얻는다. 본 제 어기를 SPMSM의 드라이브 시스템에 적용하여 파라미터의 변동, 정상상태 및 과도상태 등의 응답특성을 분석하고 본 제어기의 타당성을 입증한다.

2. HAI 제어 및 드라이브 시스템

2.1 HAI 제어

SPMSM 드라이브의 속도를 추종 및 제어를 위하여 PI, PID 및 적응제어 기법이 많이 사용되었다. 그러나 이 기법 들은 *d*-q축 리럭턴스 파라미터를 구하는데 복잡하고 파라 미터의 변동 및 부하변화에 매우 민감하였다.

SPMSM의 속도를 제어하기 위하여 퍼지제어기가 개발되 었으며 속도 추정을 위한 ANN이 연구되었다. ANN은 파라 미터 변동, 부하변화 및 시스템 외란 등에 강인한 특성을 발 휘하였다. 이러한 제어기를 위한 설계연구는 더욱 더 새로 운 방법을 모색하게 되었다. 적응제어, 퍼지제어, 신경회로망 및 유전자 알고리즘을 상호 혼합하여 각 제어기의 장점을 공유하는 HAI 제어가 유력한 기법으로 평가받을 것으로 예 측된다.

그림 1은 HAI 제어의 연구에 대하여 도식적으로 표현을 해 보았다. 각 제어기들은 화살표 방향으로 상호 공유하여 혼합제어를 형성할 수 있다.

그림 1 HAI 제어의 연구 Fig. 1 Research of HAI control

본 논문에서는 적응제어, 퍼지제어와 신경회로망을 이용하 여 HAI 제어를 구성하고 SPMSM의 속도를 제어하는데 사 용한다.

2.2 SPMSM의 드라이브 시스템

본 논문에서는 공간벡터 PWM 인버터에 의해 구동되는 고성능 SPMSM의 벡터제어 시스템을 고려한다. 이러한 시 스템 구성은 로봇, 항공기 및 전기자동차 등의 드라이브와 같은 고성능 제어 시스템에 응용된다.

그림 2는 공간벡터 PWM 인버터에 의하여 구동되는 일반 적인 SPMSM 드라이브의 벡터제어 시스템을 나타낸다.

그림 2 SPMSM의 벡터제어 시스템 Fig. 2 Vector control system of SPMSM

i^{*}_q와 i^{*}_d는 지령 토크 및 자속 성분의 전류를 나타내며 실 제전류 ⁱ_q와 i^{*}_d와 비교하여 종래의 PI 제어기를 이용하여 제 어한다. PI 제어기의 출력은 ^{v^{*}_q}와 ^{v^{*}_d}이며 이는 좌표변환에 의해 ^{v^{*}_a, ^{v^{*}_b, ^{v^{*}_c</sub>로 변환하여 공간벡터 PWM 인버터에 의해 SPMSM을 제어한다. 회전자의 위치정보 θ,는 좌표변환에 이용한다. SPMSM은 L_d = L_q = L_a 이다.}}}

동작특성을 분석하기 위한 SPMSM의 미분 방정식은 다음 과 같다.

$$pi_d = \left(v_d - Ri_d + \omega_r L_a i_q\right) / L_a \tag{1}$$

$$pi_q = \left(v_q - Ri_q - \omega_r L_a i_d - \omega_r \phi_{af}\right) / L_a \tag{2}$$

$$p\omega_r = (T_e - T_L - B\omega_r)/J \tag{3}$$

여기서, 발생토크는 다음 식으로 표현된다.

$$T_e = \frac{3}{2} P \phi_{af} i_q \tag{4}$$

3. FNN 제어기의 설계

FNN 제어기는 퍼지제어와 신경회로망를 혼합 구성하며 강력한 표현의 유연성과 수치 처리능력을 가지고 있다. 이 제어기는 퍼지룰의 전반부와 후반부를 클러스터링 방법과 다층 신경회로망으로 구성한다. 그리고 퍼지제어와 같은 강 인성 제어와 신경회로망과 같은 고도의 적응능력이 유력한 장점이다.

SPMSM 드라이브의 제어를 위한 직접 퍼지제어기의 구 조는 그림 3과 같다.

그림 3 직접 퍼지제어기에 의한 드라이브 시스템 Fig. 3 Drive system with direct fuzzy control

일반적으로 퍼지제어기의 동적인 동작은 전문지식에 기초 한 언어 제어룰의 집합에 의해 특성화된다. 언어 제어룰을 다음과 같이 가정한다.

If *E* is
$$A_{i1}$$
 and *CE* is A_{i2} then *U* is B_i (5)

여기서 *E,CE* 및 *U*는 각각 오차, 오차의 변화 및 제어변 수를 나타낸다. *A_{in}*은 퍼지 멤버쉽 함수 *µ_A(x_j)*에 의해 특 성화된 퍼지변수를 나타내고 *B_i*는 실수로 된 상수이다. *E,CE* 및 *U*의 퍼지집합은 {NL, NM, NS, ZE, PS, PM, PL}이다. 그림 4는 퍼지집합의 멤버쉽 함수를 나타낸다.

SPMSM 드라이브의 고성능 및 강인성 제어를 위하여 동 적 특성에서 다양한 속도 추정능력, 부하 변화에 적응하여 조절할 수 있는 양호한 응답특성이 요구된다. 따라서 일반 적인 퍼지제어기에서는 이러한 요구에 만족할 수 없기 때문 에 본 연구에서는 퍼지제어기와 신경회로망을 상호 혼합하 여 FNN 제어기를 구성한다. 그림 5는 SPMSM 드라이브의 제어를 위하여 FNN 제어기의 구조를 나타낸다. 그림 6은 FNN 제어기의 구성을 나타내며 여기서 두 개의 입력변수는 오차 e와 오차의 변화분 Ce이고 출력변수는 제어변수 u* 이다.

그림 4 퍼지변수의 멤버쉽 함수

Fig. 4 Membership function of the fuzzy variables

그림 5 FNN 제어기에 의한 드라이브 시스템 Fig. 5 Drive system with FNN controller

그림 6 FNN 제어기의 구성 Fig. 6 The construction of FNN controller

4. FNN 제어기의 구현

4.1 전반부 구현

그림 6에서 나타낸 셔 승부터 셔 층 사이의 신경회로망은 퍼지룰에 대한 전반부의 구현을 나타낸다. 전반부의 멤버쉽 함수를 효과적으로 설계하기 위하여 신경회로망의 구조를 간단하게 하고 수렴속도를 개선하기 위하여 클러스터링 방 법을 적용한다. 표 1은 퍼지 제어룰의 집합을 나타낸다.

Ŧ **1** 퍼지룰 표

Table 1 Fuzzy rule table

eω _r ceω _r	NL	NM	NS	ZE	PS	PM	PL
NL	NL	NL	NL	NL	NM	NS	ZE
NM	NL	NL	NL	NM	NS	ZE	PS
NS	NL	NL	NM	NS	ZE	PS	PM
ZE	NL	NM	NS	ZE	PS	PM	PL
PS	NM	NS	ZE	PS	PM	PL	PL
PM	NS	ZE	PS	PM	PL	PL	PL
PL	ZE	PS	PM	PL	PL	PL	PL

퍼지 룰베이스에서 입력공간은 49개의 부분 공간으로 나 눈다. 룰이 동일한 동작일 경우 같은 입력공간으로 클러스 터링한다. 그런 다음 새로운 클러스터링과 일치하는 룰은 전문가에 의해 재 설계되고 신경회로망으로 구현한다. 퍼지 룰의 수는 클러스터링 방법에 의해 매우 감소시킬 수 있다. 또한 이러한 구현은 비선형 함수를 설계할 수 있으며 신경 세포의 시그모이드 특성에 의해 퍼지의 입력공간을 분할한 다. A3층에서 각 신경세포의 출력은 각 부분 공간에서 퍼지 룰의 진리값이다. 퍼지 클러스터링과 학습을 실현하기 위하 여 이전 49룰과 같은 효과를 얻는 FNN 제어기는 오차의 함 수가 필요하다. FNN 제어기가 입력 데이터를 위한 요구분 할의 성취도에 따라서 결정되는 오차함수는 다음과 같다.

$$E = \frac{1}{2} \sum_{i=0}^{r} (T_i - O_i)^2$$
(6)
$$T_i = \begin{cases} 1, \ (x_1, x_2) \in R' \\ 0, \ \text{otherwise} \end{cases}$$
(7)

여기서 r는 클러스터의 수를 나타내며 Ti는 어떤 입력 데이터가 요구되는 클러스터에 포함되는지 여부를 결정하는 함수이다. 그리고 이는 4층에서 신경세포의 출력이다.

(7)

오차함수를 정의한 후, 오차를 최소화하기 위하여 다음 단계는 오차 역전파 알고리즘에 의해 세층과 셔 층 사이에 가중치 W[#]#와 W[#] 를 조절한다. 가중치 조절을 통하여 신경회 로망은 클러스터 된 퍼지룰의 전반부를 완전하게 구현할 수 있다.

$$\Delta W_{jk} = -\eta \frac{\partial E}{\partial W_{jk}} = -\eta \delta_j X_k \tag{8}$$

$$\Delta W_{ij} = -\eta \frac{\partial E}{\partial W_{ij}} = -\eta \delta_i O_j \tag{9}$$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \alpha \\ \end{array} \end{array} \not) \end{array} \begin{matrix} \lambda \\ \end{array} \\ \delta_i = (T_i - O_i) f'(U_i) \end{array} \tag{10}$$

$$\delta_j = f'(U_j) \sum \delta_i W_{ij} \tag{11}$$

O_j는 A₂층에서 신경세포의 출력이며 η는 학습률, f'(·)
 는 시그모이드 함수의 미분이며 U_i와 U_j는 각각 A₂층과
 A₃층에서 각 신경세포에 대한 전체 입력을 나타낸다.

마지막으로 학습과정 동안 진동을 피하고 수렴속도를 개 선하기 위하여 다음과 같은 모멘텀(momentum) 항으로 새 로운 조절을 가정한다.

$$W_{jk}(t+1) = W_{jk}(t) + \Delta W_{jk} + \alpha [W_{jk}(t) - W_{jk}(t-1)]$$
(12)

$$W_{ij}(t+1) = W_{ij}(t) + \Delta W_{ij} + \alpha [W_{ij}(t) - W_{ij}(t-1)]$$
(13)

4.2 후반부의 구현

그림 6에서 A_3 층과 A_4 층 사이의 신경회로망은 퍼지룰의 후반부의 구현을 나타낸다. 학습 동안 가중치 W_{ci} 는 다음 오차 함수를 최소화하기 위하여 조절한다.

$$E^* = \frac{1}{2} \sum (U^* - U)^2 \tag{14}$$

여기서 U^{*}와 U 는 FNN 제어기의 요구치와 실제치를 나 타낸다.

일반적인 델타룰을 사용하여 가중치 *W_{ci}*의 변화 Δ*W_{ci}*는 오차함수인 식(14)을 최소화할 수 있고 퍼지룰의 후반부를 재 정의하여 다음 식을 결정한다.

$$\Delta W_{ci} = -\eta \frac{\partial E^*}{\partial W_{ci}} = -\eta \delta_c O_i \tag{15}$$

 $W_{ci}(t+1) = W_{ci}(t) + \Delta W_{ci} + \alpha [W_{ci}(t) - W_{ci}(t-1)]$ (16)

여기서 δ_c 는 FNN 제어기의 출력에서 오차신호이다.

5. HAI 제어기의 설계

SPMSM 드라이브는 과도 특성에서 다양한 속도 추정능 력, 부하 및 관성 등 파라미터의 변동에도 고성능 및 강인성 이 요구된다. HAI 제어기는 FNN 제어기에 기준 모델을 설 계하여 퍼지추론으로 구현할 수 있는 적응 메카니즘으로 구 성한다.

그림 7은 HAI 제어기의 알고리즘를 나타내며 FNN 제어 기를 설계하고, 적응 퍼지제어기인 AFC(Adaptive Fuzzy Controller)[6]를 병렬로 연결한다. FNN에서 나타나는 오차 를 보상하기 위하여 AFC를 사용하며 AFC는 기준 모델을 고려한 적응 메카니즘을 나타낸다.

그림 7 제시한 HAI 제어기의 알고리즘 Fig. 7 Algorithm of proposed HAI controller

FNN 알고리즘에 의한 출력은 Δ^{*}_{q1}(k)이며 AFC에 의한 출력은 Δ^{*}_{q2}(k)이다. 이 두 출력을 합하여 적분기를 통해 지 령 *q* 축 전류를 얻는다.

AFC는 기준모델을 사용하여 그림 7에서 전동기의 출력 $\omega_r(k)$ 는 기준모델의 출력 $\omega_m(k)$ 와 비교하여 오차 $e\omega_m(k)$ 는 AFC에 의해 수행된다. 기준모델은 안정화 시간 및 오버슈 트와 같은 설계기준을 만족하는 요구성능을 충족시키기 위 하여 사용하며 1차 시스템을 사용한다. 그림 8은 기준모델 에 의한 AFC를 나타낸다. AFC의 루프는 FNN 루프와 병렬 로 연결한다.

Fig. 8 AFC with reference model

AFC에 의한 출력은 $\Delta i_{q2}^{*}(k)$ 를 발생시킨다. $\Delta i_{q1}^{*}(k)$ 과 $\Delta i_{q2}^{*}(k)$ 를 합하여 $\Delta i_{q}^{*}(k)$ 를 구하여 이를 적분기를 통해 $i_{q}^{*}(k)$ 를 발생시켜 플랜트에 인가한다.

AFC의 입력은 기준모델의 출력과 실제속도의 오차 (e\alpha_m(k))와 오차의 변화분(ce\alpha_m(k))을 사용한다. 오차와 오 차의 변화분은 다음과 같다.

 $e\omega_m(k) = \omega_m(k) - \omega_r(k) \tag{17}$

$$ce\omega_m(k) = e\omega_m(k) - e\omega_m(k-1) \tag{18}$$

위의 두 입력은 적응 퍼지의 룰 베이스에 의해 지령 $q \triangleq$ 전류에 보상되는 $\Delta i_{q2}^{*}(k)$ 가 발생된다. 여기서 $\omega_{m}^{*}(k)$ 는 기준 모델에 의한 지령속도이며 $\omega_{r}(k)$ 는 실제 회전자 속도이다.

FNN의 출력에서 $\Delta i_{q1}^{*}(k)$ 을 얻어 AFC에서 $\Delta i_{q2}^{*}(k)$ 와 합하 면 퍼지제어기의 지령 $q \stackrel{+}{\prec}$ 전류를 얻을 수 있다.

$$i_{q}^{*}(k) = i_{q}^{*}(k-1) + [\Delta i_{q1}^{*}(k) + \Delta i_{q2}^{*}(k)]$$
(19)

HAI 제어기에 의해 제어되는 SPMSM의 드라이브 시스

템은 그림 9와 같고 인버터는 공간벡터 PWM 방식을 사용 한다.

그림 9 SPMSM의 드라이브 시스템의 구성도 Fig. 9 Configuration diagram of SPMSM drive

6. 시스템의 성능결과

본 연구에서 사용한 SPMSM의 파라미터는 표 2와 같다.

표 2 SPMSM의 파라미터 Table 2 Parameters of SPMSM

극수	4
전기자 저항 R _s	2.125[Ω]
영구자석 쇄교자속 🎣	0.189[Wb]
정격 주파수	60[<i>Hz</i>]
전기자 최대전류 I_{am}	10[A]
전기자 최대전압 V_{am}	200[V]
인덕턴스 La	11.6[<i>mH</i>]
정격 속도	1800[rpm]

그림 10는 PI, FNN 및 HAI 제어기의 속도와 4축 전류를 비교한 결과이다. 샘플링 주기를 *T_s*=0.2[*msec*]로 하고 스텝 지령속도를 1000[rpm]으로 운전하다가 0.4[sec]에서 0.8[sec] 까지 지령속도를 1800[rpm]을 변화하고, 1.3[sce]에서 1.7[sec]까지 부하토크를 3[N·m] 인가하였을 경우의 응답특 성이다. 그림 10(a)는 종래의 PI, FNN 제어기 및 HAI 제어 기의 속도를 나타내고, 그림 10(b)는 4축 전류를 나타낸다.

그림 11은 그림 10의 스텝 지령속도변화에 대한 응답특성 을 명확하게 비교하기 위하여 확대한 그림이다. 그림 11(a) 는 스텝 지령속도를 상승시킬 경우의 응답속도 비교이고, 그림 11(b)는 지령속도를 감소시킬 경우의 응답속도를 비교 한 결과이다. HAI 제어기의 속도는 지령속도의 변화에 PI 및 FNN 제어기의 속도에 비해 정상상태에 고속으로 추종하 며 오버슈트가 매우 작게 나타난다.

그림 12는 그림 11과 같은 조건에서 샘플링 주기를 *T_s*=0.5[*msec*]로 하였을 경우의 응답특성 비교이다. 샘플링 주기를 크게 하였을 경우 PI 및 FNN 제어기의 속도는 오버 슈트가 커지고 추종 시간이 길어진다. 샘플링 주기가 클 경 우 적응 FNN 제어기의 응답특성이 더욱 양호하게 나타나는 결과를 확인할 수 있다.

그림 13은 그림 10의 부하토크 변화에 대한 HAI와 FNN 제어기의 응답특성을 확대하여 비교한 그림이다. 정격관성 인 상태에서 부하토크를 인가하였을 경우 HAI 제어기의 속 도는 FNN 제어기에 비해 속도 변화가 적고 정상상태에 빠 르게 도달한다.

그림 14는 그림 13과 같은 조건에서 관성을 3배 증가시켰

을 경우의 응답특성 비교이다. 관성을 증가시켰을 때 HAI와 FNN 제어기의 속도변화가 적게 나타나지만 HAI 제어기의 응답특성이 양호하게 나타나는 것을 알 수 있다.

그림 15는 무부하 상태에서 관성을 5배 증가시키고 4상한 운전하였을 경우의 응답특성을 나타낸다. 그림 (a)는 FNN 제어기의 지령속도와 실제속도를 나타내고 (b)는 HAI 제어 기의 지령속도와 실제속도를 나타내며 실제속도는 지령속도 에 양호하게 추종하고 있다. 그림(c)는 FNN 제어기의 4축 전류, (d)는 HAI 제어기의 4축 전류이다. 그림(e)는 지령속 도와 실제속도의 오차를 나타내며 HAI 제어기의 속도오차 가 FNN 제어기에 비해 매우 감소하고 있다. 관성을 증가시 키면 지령 속도변화에 대한 실제속도는 크게 변화한다. 그 러나 HAI 제어기는 FNN 제어기 보다 속도변화의 폭은 감 소되고 실제속도가 지령속도에 양호하게 추종한다.

그림 16은 그림 15보다 빠르게 속도를 변화시켜 무부하 상태로 4상한 운전 중, 0.7[sec]에서 부하토크를 3[N·m] 인 가한 상태에서 FNN 및 HAI 제어기의 응답특성을 나타낸 다. 4상한 운전 중 부하를 인가하였을 경우에도 HAI 제어기 의 속도오차가 FNN 제어기의 오차에 비해 매우 감소되고 있다. 따라서 본 논문에서 제시한 HAI 제어기가 속도의 변 화, 부하변화 및 관성변화 등의 광범위한 운전조건에서 FNN 제어기보다 응답특성이 매우 향상된다.

그림 10 속도변화에 대한 응답특성의 비교

Fig. 10 The comparison of response characteristics with speed change

그림 11 속도변화에 대한 응답특성의 비교.(T_s = 0.2[msec]) Fig. 11 The comparison of response characteristics with speed change

그림 12. 속도변화에 대한 응답특성의 비교. (T_s = 0.5[msec]) Fig. 12 The comparison of response characteristics with speed change

그림 13 부하토크의 변화에 대한 응답비교 (J=J_n) Fig. 13 Response comparison with change of load torque

그림 14 부하토크의 변화에 대한 응답비교. (J=3J_n) Fig. 14 Response comparison with change of load torque

- 그림 15 4상한 동작에서 FNN 제어기와 HAI 제어기의 응답비교
- Fig. 15 Response comparison with FNN controller and HAI controller in quadrant operation. $(J = 5J_n)$

- 그림 16 부하토크 인가 시 4상한 동작에서 FNN과 HAI 제 어기의 응답비교
- Fig. 16 Response comparison with FNN controller and HAI controller with load torque in guadrant operation

7.결 론

본 연구에서는 SPMSM 드라이브의 속도제어를 위하여 HAI 제어기를 제시하였다. FNN 제어기는 퍼지룰의 조건부 와 결론부를 클러스터링 방법과 다층 신경회로망으로 구성 하였다. 이 제어기는 퍼지제어에서 나타나는 장점인 고성능 및 강인성 제어를 얻을 수 있으며 신경회로망에서 나타나는 장점인 고도의 적응제어의 능력을 얻을 수 있다. 더욱 성능 향상을 위하여 기준모텔에 기초한 적응 메카니즘의 기법을 적용해 보았다.

HAI 제어기를 SPMSM의 드라이브 시스템에 적용하여 파라미터의 변동, 정상상태 및 과도상태 등의 응답특성을 분석하였다. 샘플링 시간, 속도, 부하토크 및 관성의 변화에 도 HAI 제어기는 FNN 제어기 보다 상승시간은 빠르고 오 버슈트는 작게 나타나며 고성능으로 적응 추정할 수 있었 다. 그리고 전동기의 정·역회전인 4상한 운전에서도 HAI 제어기의 성능은 우수하게 나타났다.

본 연구에서는 제시한 HAI 제어기는 파라미터의 변동 및 과도상태에서 드라이브의 응답특성이 양호하게 나타났으며 속도의 추정도 만족할만한 결과를 얻을 수 있었다.

감사의 글

본 논문은 2004년 순천대학교 공과대학 학술연구 비에 의하여 연구되었음.

참 고 문 헌

- [1] B. K. Bose, "Power electronics and AC drives," Englewood Cliffs. Ed. Prentice Hall, 1986.
- [2] K. J. Astrom and B. Wittenmark, "Adaptive control," Addison-Wesley, 1989.
- [3] F. Mrad, Z. Gao and N. Dhayagyagude, "Fuzzy logic control of automated screw fastening," *IEEE IAS Ann. Meet.*, pp. 1673–1680, 1985.
- [4] Q. Guo, R. Luo and L. Wang, "Neural network adaptive observer based position and velocity sensorless control of PMSM," AMC '96-MIE. Proceedings., 1996 4th International Workshop, vol. 1, pp. 41-46, 1996.
- [5] R. Krishnan, R. Monajemy and N. Tripathi, "Neural control of high performance drives: an application to the PM synchronous motor drive," IEEE IECON Conference, vol. 1, pp. 38–43, 1995.
- [6] D. H. Chung, J. C. Lee and H. G. Lee, "Adaptive fuzzy controller for high performance PMSM drive," KIEE Trans., vol. 51D, no. 12, pp. 535–541, 2002.

이 홍 균 (李 洪 鈞)

1973년 7월 15일생. 1999년 순천대 공대 전기제어공학과 졸업. 2001년 동 대학원 전기공학과 졸업(석사). 2004년 동 대학원 정보통신공학부 박사수료

Te: 061-750-3543, Fax: 061-750-3508

E-mail : phoenix5@mail.sunchon.ac.kr

이 정 철 (李 廷 喆)

1995년 순천대 공대 전기공학과 졸업. 1998년 순천대 대학원 전기공학과 졸업 (석사). 2005년 동 대학원 박사. 2001년 ~ 현재 제일대학 차량기계학부 겸임교 수.

Tel: 061-750-3543, Fax: 061-750-3508 E-mail : jclee0123@hanmail.net

정 동 화 (鄭 東 和)

1979년 영남대 공대 전기공학과 졸업. 1981년 한양대 대학원 전기공학과 졸업 (석사). 1987년 동 대학원 전기공학과 졸 업(박사). 1988년~1989년 현대중전기(주) 기술연구소 책임연구원.1989년~현재 순 천대학교 정보통신공학부 교수

Tel: 061-750-3543, Fax: 061-750-3508 E-mail : hwa777@sunchon.ac.kr WebPage: http://pelab.sunchon.ac.kr/~hwa777