• 제목/요약/키워드: error optimization

Search Result 1,211, Processing Time 0.024 seconds

Inversion of Geophysical Data with Robust Estimation (로버스트추정에 의한 지구물리자료의 역산)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.433-438
    • /
    • 1995
  • The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.

  • PDF

The Impact of Network Coding Cluster Size on Approximate Decoding Performance

  • Kwon, Minhae;Park, Hyunggon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1144-1158
    • /
    • 2016
  • In this paper, delay-constrained data transmission is considered over error-prone networks. Network coding is deployed for efficient information exchange, and an approximate decoding approach is deployed to overcome potential all-or-nothing problems. Our focus is on determining the cluster size and its impact on approximate decoding performance. Decoding performance is quantified, and we show that performance is determined only by the number of packets. Moreover, the fundamental tradeoff between approximate decoding performance and data transfer rate improvement is analyzed; as the cluster size increases, the data transfer rate improves and decoding performance is degraded. This tradeoff can lead to an optimal cluster size of network coding-based networks that achieves the target decoding performance of applications. A set of experiment results confirms the analysis.

Jet Measurements with High-Vision 3D-PTV

  • Doh D. H.;Kim D. H.;Cho Y. B.;Saga T.;Kobayashi T.;Pyun Y. B.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.6-13
    • /
    • 2001
  • A new GA-3D-PTV technique has been constructed to measure an impinging jet. The measurement system consists of three CCD cameras, Ar-ion laser, an image grabber and a host computer. GA (Genetic Algorithm) was used based on one-to-one correspondences in order to take advantage of the combinatorial optimization in tracking the pairs of the whole particles of the two images having a time interval. Two fitness functions were introduced in order to enhance the correspondences of the particles. One was based on a concept of the continuum theory and the other one was based on a minimum distance error. The constructed GA-3D-PTV system was applied in success to the measurement of flow characteristics of the impinging jet.

  • PDF

Estimating groundwater recharge from time series measurements of subsurface temperature

  • Koo, Min-Ho;Kim, Yongje
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.213-216
    • /
    • 2003
  • Efforts for better understanding of the interaction between groundwater recharge and thermal regime of the subsurface medium is gaining momentum for its diverse applications in water resources. A numerical model is developed to simulate temperature variations of the subsurface under time varying groundwater recharge. The model utilizes MacCormack scheme for finite difference approximation of the partial differential equation describing the conductive and advective heat transport. For the estimation of recharge rate, optimization of the model is realized by searching for the unknown parameters which minimize the root-mean-square error between simulated and measured temperatures. Simulation results for 22-year time series data of temperature measurements reveal that the proposed model can accurately simulate subsurface temperature variations resulting from the redistribution of the heat due to the movement of water and it can also estimate temporal variations of recharge. Seasonal variations of recharge and a linear relationship between precipitation and recharge are clearly reflected in the simulated results.

  • PDF

Study on the Performance of Mismatched Quantizers on Weibull Sources (Weibull 신호원에 불일치 된 양자기 성능에 관한 연구)

  • 강신규;나상신
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2184-2187
    • /
    • 2003
  • Quantizers for digital coding systems are usually optimized with respect to a model of the probability density function of the random variable to be quantized. Thus a mismatch of the quantizer relative to the actual statistics of the random variable may be unavoidable. This paper presents the results of an experimental investigation of mismatched quantizers. For the modeling of the source statistics, various types of the Weibull distribution are used, and the optimization of the quantizer is carried with respect to the minimum mean-square error (mse) criterion. The goal of this paper is to find an estimate formula for the mismatched quantizer on Weibull sources.

  • PDF

A Design of 2-D Optimal Approximation FIR Digital Filter using Parks-McClellan Algorithm (Parks MeClellan 알고리듬을 이용한 이차원 최적 근사화 FIR 디지털 필터의 실시간 구현)

  • 윤형태;이근영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.18-26
    • /
    • 1993
  • This paper presents the design method for two-dimensional FIR digital filter using optimization scheme. The proposed design method is to extend the optimal one-dimensional filter design algorithm proposed by Parks and McClellan to two-dimensional case. When extending one-dimensional design scheme to two-dimensional one, some problems occur. In this paper we solved the problems by using the least square error model, the two-dimensional Lagrange interpolation, and the modified alternation theory. As a result, the equi-ripple FIR filter is obtained that is more optimal and more specific than the conventional methods.

  • PDF

Computer Aided Optimal Circuit Design (전자계산기에 의한 최적회로설계 방식 연구)

  • 김덕진;김선영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.4
    • /
    • pp.22-31
    • /
    • 1977
  • A general equation by which the Hessian matrix of an error function can be determined directly, has been derived. It was verified to be useful in optimization processes that include the Hessian matrix. A few design examples had shown that this method had accelerated the processes of finding the minimums. The advantage of this technique is the possibility of optimizing functions that composed of both the phases and magnitudes.

  • PDF

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

A Study on the Optimization of Slot Cut in the End Milling Processes (엔드밀에 의한 슬롯가공의 최적화에 관한 연구)

  • Choi, Jong-Guen;Kim, Hyung-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2006
  • A slot cut in end milling processes is one of the laborious works because the cutting force is likely to deflect the tools excessively, then to make large errors or to fracture the tool. This difficulty is owing to the poor stiffness of slender shaped end mills. Though, in most cases, additional finish cuts are followed after rough cuts, the accuracy of rough cuts is still important because it affects the final accuracy after finish cuts and productivity. The accuracy in slot cuts depends on the tool stiffness and the cutting conditions including depth of cut and feed. In order to meet the desired accuracy, diameter of end mill and cutting allowance have to be selected carefully. This study suggests several guidances for selecting the end mill diameter and the slot cut allowance to improve machining accuracy and productivity in slot end millings. Some experiments were done with the various cutting parameters of tool diameter, depth of cut and feed.