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Abstract 
 

In this paper, delay-constrained data transmission is considered over error-prone networks. 
Network coding is deployed for efficient information exchange, and an approximate decoding 
approach is deployed to overcome potential all-or-nothing problems. Our focus is on 
determining the cluster size and its impact on approximate decoding performance. Decoding 
performance is quantified, and we show that performance is determined only by the number of 
packets. Moreover, the fundamental tradeoff between approximate decoding performance and 
data transfer rate improvement is analyzed; as the cluster size increases, the data transfer rate 
improves and decoding performance is degraded. This tradeoff can lead to an optimal cluster 
size of network coding-based networks that achieves the target decoding performance of 
applications. A set of experiment results confirms the analysis. 
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1. Introduction 

The new era of communication and computer networks can be represented by 
always-connected devices such as the Internet of Things (IoT), i.e., everyday objects are 
connected to a network so that data can be shared among them. Supported by the hardware 
development of sensors and communication chipsets, many devices have become 
communication enabled [1]–[5]. This has resulted in explosive data generation; hence, IoT 
networks should be able to efficiently manage a large amount of data, i.e., efficient 
information exchange and delivery in ad hoc network topologies.  

Network coding can be used as a solution to enable efficient information exchange and 
delivery [6]. Such coding can increase the data transfer rate by utilizing path diversity in 
networks. Instead of simply forwarding data as in conventional routing, network coding 
enables intermediate nodes to combine incoming data packets into a single packet based on 
basic operations and to forward the packet to neighbor nodes [7]–[9]. The potential advantages 
of network coding include efficiency in resources (e.g., bandwidth and power), robustness 
against network dynamics [10], and scalability [11]. However, network coding has a critical 
drawback when deployed in delay-constrained error-prone networks (e.g., disaster/emergency 
networks). Since multiple-source data sets are combined in a network-coded packet, decoding 
is permitted only when receiving a sufficient number of encoded packets (i.e., at least the same 
as the number of combined source data sets). If there are not enough packets for decoding, 
none of the source data sets can be recovered. This is referred to as the all-or-nothing nature of 
network coding [12]. In order to overcome this limitation, approximate decoding has been 
proposed [13]–[16]. Approximate decoding enables the source data to be recovered even when 
the number of received packets is not sufficient at the moment of reconstruction.  

An important issue to be resolved is the efficient formation of clusters when network coding 
is deployed in error-prone networks [17]–[24]. Most clustering studies have focused on cluster 
formation and cluster head selection, which can lead to minimum energy consumption, and 
there are few studies on determination of cluster size, particularly when network coding is 
deployed. This is a fundamental question because of the network coding operations that 
combine data packets collected from the cluster members in each cluster. Therefore, the 
number of cluster members (i.e., cluster size) should be taken into account in cluster formation 
while explicitly considering the delay constraints of the application and decoding 
performance.  

It is intuitively expected that a larger cluster size will lead to better efficiency in terms of data 
transfer rate as more source data packets are combined and transmitted together. However, as 
cluster size increases, decoders may need to wait longer to receive enough packets to decode, 
which incurs longer decoding latency. Moreover, the approximate decoding performance is 
determined by the cluster size because any packets missed during the transmission can 
significantly reduce the number of correctly recovered source data sets encoded together. 
Therefore, it is essential to analytically investigate the impact of cluster size on approximate 
decoding performance so that an optimal size of a cluster can be determined. 

In this paper, the impact of cluster size on approximate decoding performance and data 
transfer rate is analytically studied. In particular, the case in which packets are lost or delayed 
by the decoding deadline is mainly considered, a situation which is highly probable for 
delay-constrained data transmission over error-prone networks. An analytical trade-off 
between approximate decoding performance and data transfer rate is shown, i.e., a smaller 
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cluster size achieves better performance but demonstrates degraded data transfer rate 
improvement. 

The main contributions of this paper can be summarized as follows: 
 we quantify the approximate decoding performance,  
 we show that the performance is determined only by the number of packets, 
 we analytically study the impact of cluster size on approximate decoding performance 

and data transfer rate, and 
 we show the tradeoff between approximate decoding performance and data transfer rate. 

This paper is organized as follows. In Section 2, related works are discussed. The system 
setup and a brief overview of approximate decoding are provided in Section 3. The 
performance analysis of approximate decoding and the impact of cluster size on decoding 
performance are studied in Section 4.1 and Section 4.2, respectively. In Section 5, simulation 
results are presented. Finally, the conclusion is drawn in Section 6. 

2. Related Works 
In this section, prior works related to the proposed approaches are presented. In order to 

overcome the all-or-nothing problem of network coding, several approaches have been studied. 
In-network compression has been developed in several studies [25]–[28]. Motivated by the 
compressed sensing theory, the number of packets to be transmitted can be decreased via 
compression processes in networks, and a decoder reconstructs original data from the 
compressed packets. In [25], correlated sources are considered for utilizing compressed 
sensing in source and channel coding processes. In [26], encoders combine source data based 
on compressive measurements, and statistical dependency is used with the sum-product 
algorithm for reconstruction. A practical system for exploiting source correlation knowledge 
is provided in [27], and an approach to combine the field difference between network coding 
and compressed sensing, which are a Galois Field (GF) and real field, respectively, is 
presented in [28]. In these works, however, it is still possible that compressed packets are not 
delivered to the decoder on time, leading to decoding failure, even though the number of 
packets used for the decoding process is less than the number of original packets. 

As an alternative approach for overcoming the all-or-nothing problem, approximate 
decoding has been developed [13]–[16]. Approximate decoding was originally proposed in 
[13] with a heuristic approach. The source data similarity is used at the decoder, and the 
optimal size of the finite coding field is determined. In [14], a linearly correlated source and 
corresponding decoder design are provided, and the impact of the similarity factor is analyzed. 
In order to improve the decoding performance of approximate decoding, a position 
information matrix (PIM) is used [15]. The PIM allows decoders to refine the recovered data 
and to improve decoding performance. If the distribution of the source correlation is 
symmetric, the knowledge of the mean of distribution is sufficient to maximize approximate 
decoding performance [16]. Even though these works provide solutions to the all-or-nothing 
problem, they do not consider cluster formations in networks, which is essential for efficiently 
managing IoT networks. Cluster formation should be studied by explicitly considering several 
parameters such as cluster size because they might significantly affect network coding and 
decoding performance.  
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For efficient cluster formation in error-prone networks, several algorithms have been 
developed while minimizing energy consumption in the networks. Low-Energy Adaptive 
Clustering Hierarchy (LEACH) [22] was one of the first hierarchical routing approaches. In 
this algorithm, cluster heads are randomly selected, so the performance of the algorithm 
greatly relies on cluster heads rather than cluster members. In order to efficiently select cluster 
heads, Low-Energy Adaptive Clustering Hierarchy Centralized (LEACHC) is presented in [23] 
to use information about locations and energy levels of nodes that belong to base stations for 
cluster formation. Hybrid Energy-Efficient Distributed clustering (HEED) [24] was proposed 
with use of a multihop clustering algorithm, which determines cluster heads based on the 
residual energy of each node and the intra-cluster communication cost. However, none of the 
algorithms mentioned above consider deploying network coding techniques in error-prone 

Fig. 1. An illustrative example of an error-prone network based on network coding. In this example, 
three clusters involve 10 source nodes. A network coding-enabled node collects data from its cluster 

members and performs network coding. 
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networks. Therefore, a blind deployment of these algorithms to network coding-based data 
delivery may provide only limited performance.  

3. System Setup 
An error-prone network consists of source nodes, intermediate nodes, and a destination. The 

nodes form clusters and perform network-coding operations. The network-coded data are 
delivered to the destination through intermediate nodes that also perform network-coding 
operations. Our analysis is based on a single cluster, which can be extended to multiple 
clusters. Parts of the system setup discussed in this section can also be found in [13] and [15]. 
An illustrative example of the considered error-prone network is shown in Fig. 1. 

3.1 Linearly Correlated Sources  

Let (1) ( ) ( )[ , , , , ]i L T
t t t tx x x= … …x  be the t -th source data set obtained by the t -th source 

node and its element, ( )i
tx , for 1 i L≤ ≤  be the i -th element in tx . All source data are in

(2 )MGF 1, which is a GF  with a size of 2M , such that network-coding operations can be 

performed in (2 )MGF . In this paper, source data sets are linearly correlated [29], [30], i.e.,  

1 1t t+ = + ∆ ⋅x x 1                                                       (1) 

where 1  denotes a vector with all ones, and 1 2k∆ = , 0 k M≤ < , represents the source 
correlation. This source model can capture several types of signal such as temperature 
changes in long-term periods and seismic signals at different sources.  

In the field of real numbers (ℝ), 1∆  can perfectly capture the relationship between 

1t+x  and tx , as 1 1t t+ − = ∆ ⋅x x 1  is deterministic. However, results of the corresponding 

operation in the GF , 1t t+ ⊕x x 2, can be determined in a set, tΔ , expressed as 

 1 1 1

1 2

{ | }
, , , , ,

t t t t t

i n

+ += ⊕ − = ∆ ⋅
∆ ∆ … ∆ … ∆

Δ x x x x 1
∋

                                       (2) 

where n M k= −  for 1 2k∆ =  [15]. Therefore, unlike the case in ℝ, the correlation between 

consecutive source data sets can be captured by considering tΔ . This problem has been 

addressed in [15], and a PIM is introduced as including elements in tΔ  and their positions. 
The PIM is constructed at a source data set and transmitted to the decoder along with data 
packets. 
 

1 As in [13], an identity function is defined for the field transition between ℝ and (2 )MGF . If 

an obtained source symbol is not in (2 )MGF , the identity function can be used prior to our 
system setup. 
2 Addition and subtraction are denoted by ⊕  and are equivalent operations in the GF . In this 
paper, they are performed by XOR (exclusive OR). 
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3.2 RLNC-based Encoding  

An intermediate node at the h -th coding stage receives packets ( ) ( 1)i h −y  from other 

nodes and generates packets ( ) ( )i hy  by mixing them based on random linear network coding 

(RLNC) [31]. Then, the node again transmits ( ) ( )i hy  to its neighbor nodes toward the 
destination. Specifically, a set of K  innovative (i.e., linearly independent) packets, denoted as 

( ) ( ) ( )
1( ) ( ), , ( )

Ti i i
Kh y h y h = … y , is generated by        

 
( ) ( )

( ) ( )
1 1

( 1) ( ) ( )
{ ( ) ( )} { ( ) ( )}

i i

i i

h h h
h y h h y hλ λ

+ =
= ⊗ ⊕ ⊕ ⊗

y c y
c c




                (3) 

which is a linear combination of ( ) ( )i hy  and the coding coefficient matrix 

1( ) [ ( ), , ( )]Th h hλ=c c c . λ  is the number of packets combined together, which is the same 
as the number of members in a cluster, i.e., cluster size. The number of outgoing packets, K , 
is chosen such that K λ≥  and may depend on the expected packet erasure rate; higher K  is 
recommended for high erasure rate, and vice versa. Note that ( ) ( ) ( )

1(1) [ , , ]i i i Tx xλ= …y  is the 
initial packet.   denotes the multiplication between matrices in the GF , and ⊕  and ⊗  
denote additive and multiplicative operations defined in the GF , respectively. In RLNC, the 
elements of ( )hc  are uniformly and randomly chosen from (2 )MGF .  

Finally, the coded packet at the h -th coding stage in (3) can be expressed as 

 

( ) ( )

( )

( )

( 1) ( ) ( )
( ) ( 1) (1)
( )

i i

i

i

h h h
h h
h

+ =
= −
=

y c y
c c c x
C x



  



                    (4) 

where ( )hC  is referred to as a global coding coefficient matrix, which is included in the 
header of the packet and delivered to the decoder to enable decoding and reconstruction. As 
shown in [31], ( )hC can be assumed to be full-rank when the GF size is larger than the 
number of receivers in RLNC networks. Hence, we assume that ( )hC  is full-rank in this 
paper.  
 

3.3 Approximate Decoding with PIM  

For a decoder at the destination ( Dh -th coding stage), if the coding coefficient matrix, 

( 1)Dh −C , is full-rank (i.e., K λ= ), then ( )ˆ ix  = ( ) ( )
1̂ ˆ[ , , ]i i Tx xλ…  can be uniquely determined 

as 

 ( ) ( ) ( ) 1 ( )
1ˆ ˆ ˆ, , ( 1) ( ).

Ti i i i
D Dx x h hλ

− = … = − x C y                              (5) 

However, if the number of received packets is insufficient to determine a unique 1( 1)Dh −−C  
(i.e., K λ< ) as a result of packet delay and/or packet loss in transmission, for example, 

( 1)Dh −C is not full-rank, potentially leading to multiple solutions, ( )ˆ ix , to the linear system 
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expressed in (5). This problem was solved based on approximate decoding with the PIM [15], 
expressed as  

 

1 ( )( ) ( 1) ( )
.

ii D D

PIM

h h−−   
=   
   

C y
x

D Δ


                                      (6) 

The main idea of the approximate decoding algorithm is to add extra equations D  and PIMΔ  

based on the source correlation, so that the matrix ( 1)
TT T

Dh − C D  in (6) becomes 

invertible. Therefore, equation 1t t t+= ⊕Δ x x  is added to provide source characteristics in (6). 
In particular, ( )Kλ λ− ×  matrix D  is constructed such that each row consists of zeros (i.e., 

additive identity of (2 )MGF ) except for two elements of value “1” (because 1  is the additive 

inverse of 1  in (2 )MGF ) that correspond to the positions of the linearly correlated data, ( )i
tx  

and ( )
1

i
tx +  [13]. Then, PIMΔ  with a size of ( )Kλ −  is accordingly determined using the PIM 

received from the encoder3. 
While it is shown that a PIM can improve the performance of the approximate decoding 

approaches, the impact of cluster size on the performance of the approximate decoding is not 
clearly quantified. This is discussed in Section 4.  

4. Impact of Cluster Size on Approximate Decoding Performance 
In this section, the impact of cluster size on data transfer rate and performance of the 

approximate decoding algorithm is studied in conjunction with the PIM. 
 

4.1 Performance Analysis of Approximate Decoding 

For the performance analysis, let :lN Kl= −  packets be unavailable at a decoder, i.e., the 
received packets are not sufficient for perfect decoding. Hence, the approximate decoding 
algorithm needs to be deployed. The performance of the approximate decoding algorithm is 
measured by the probability of data being correctly decoded, i.e., ( ) ( )ˆPr( )i i=x x . The main 
result is stated in the property shown below. 

 
Property: The probability that data is correctly decoded based on the approximate decoding 

with the PIM depends only on lN . Furthermore, the performance improves as lN  decreases.  
 
Proof: See Appendix A. 
 
 
 
 
 

3 In order to avoid duplication of the description from prior works, we present only the key 
idea of a PIM in this paper. More information can be found in [16]. 
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An illustrative example that confirms the property for various PIM overheads is shown in 
Fig. 2. The PIM overhead represents the ratio between the amount of information additionally 
included in a PIM and the amount of data needed to be transmitted. The probability of correct 
decoding is computed based on (15) in Appendix A. Fig. 2 shows that smaller lN  leads to 
higher probability of correct decoding for all PIM overheads, meaning better performance. 
Since the performance of the approximate decoding with a PIM is bounded by a minimum 
performance level, θ  [15], the plots shown in Fig. 2 are generated by 

 ( ) ( )
1ˆmax{ ,Pr( | , , , )}i i

n lNθ = ∆ … ∆x x                               (7) 
where λ = 8 and θ = 0.6042. 

We next consider the impact of cluster size on approximate decoding and network coding. 
 

4.2 Impact of Cluster Size on Performance 

In this section, the impact of cluster size λ  on both approximate decoding performance and 
data transfer rate is investigated based on the property discussed in Section 4.1. 

Given lN , a packet loss rate of network condition γ  is defined as  

 / .lNγ l=                                                                  (8) 
Data transfer rate is defined as the amount of information that can be transmitted in a time slot, 
which is denoted by R  and is expressed as 

 [bits/sec]
d

L MR
T

λ ⋅ ⋅
=                                              (9) 

Fig. 2.  As 𝑵𝑵𝒍𝒍 decreases, the proposed performance measure (probability of correct decoding) increases 
over various PIM overhead ranges. 
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where dT  is the duration of the time slot. Since a source data is represented by M  bits (as 

GF  size is 2M ) and a packet consists of L  source data, M L× indicates the bits per packet. 
In terms of packet loss rate and data transfer rate, the property can be interpreted as follows.  

 
 Interpretation 1: Given packet loss rateγ , smaller cluster size λ  leads to better 
performance. 
 Interpretation 2:  Larger cluster size λ  leads to better data transfer rate. 

As shown in (8), λ  is proportional to lN  for fixed γ . Thus, a smaller λ  can achieve 
better performance (Interpretation 1). Moreover, R  is proportional to λ  as in (9). Hence, the 
data transfer rate increases as λ  increases (Interpretation 2). 

The interpretations confirm a fundamental tradeoff between potential data transfer rate and 
performance of the approximate decoding, i.e., high data transfer rates can be achieved at the 
cost of decoding performance degradation, and vice versa. That is, a smaller cluster size leads 
to a higher probability of a sufficient number of packets being available for decoding, thereby 
achieving better approximate decoding performance. However, this does not take into account 
the advantages of deploying network coding techniques, i.e., data transfer rate improvement. 
Therefore, an appropriate cluster size is selected by taking into account the network conditions 
and the desired decoding performance. 
 

5. Simulation Results 
In this section, experimental results are presented and confirm the interpretations discussed 

in Section 4.2. 
Fig. 3 shows the approximate decoding performance for several cluster sizes in error-prone 

networks with a 25%  packet loss rate. In the simulations, parameters are set as 10M = , 
256L = , 3k = , and 3γ = , meaning that the network-coding operations are performed in 

intermediate nodes based on RLNC in . The first set of source data, 1x , with a data 

block size of 16 16× , is randomly generated in the range of [0, ], and a 

set of linearly correlated source data is generated such that , where 

1 8∆ = . Fig. 3 shows the average rates of correct decoding, defined as  

 ( ) ( )

1

ˆ( ) /
L

i i
t t

i
I x x L

=

−∑                                                   (10) 

where 

 
1 if 0

( )
0 if 0

x
I x

x
=

=  ≠
                                                 (11) 
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which indicates the ratio between the number of correctly decoded elements in tx  (1 t T≤ ≤ ) 
and the total number of elements ( L ) in the source data sets over 1000 independent 
experiments.  

Fig. 3 confirms the validity of Interpretation 1. Specifically, it is clear that smaller cluster 
size λ  can generally lead to better performance. For example, if the PIM overhead is 35%  
(indicated by δ  in Fig. 3), the best performance is achieved when 4λ =  (the smallest cluster 
size), while the performance is the worst when 28λ =  (the largest cluster size). Note that the 
plots for performances converge to similar levels in the ranges of very low PIM or very high 
PIM. This is because the information provided by the PIM is insufficient for approximate 
decoding to correctly recover the source data in the range of very low PIM. On the other hand, 
in the range of very high PIM, which corresponds to the case where n M k= − , all of the 
information needed by the approximate decoding algorithm for perfect decoding can be 
included in the PIM. Hence, the original source data symbols can be perfectly decoded.  

Fig. 4 shows the fundamental tradeoff between cluster size and approximate decoding 
performance for several PIM overheads. In the simulations, parameters are set as 10M = , 

128L = , 3k = , 6n = , and 1dT = ; thus, seven i∆  ( 1, ,7i =   as 10 3 7M k− = − = ) can 

be included at most in a PIM [15]. The results shown in Fig. 4 include the cases where 1∆ , 2∆ , 

3∆ , and 4∆  are included in a PIM (corresponding to 30.6% PIM overhead) and the case where 

1∆ , 2∆ , 3∆ , 4∆ , 5∆ , and 6∆  (corresponding to 34% PIM overhead) are included in a PIM. 

Fig. 3  The average rates of correct decoding for several PIM overheads given 25% packet loss rate 
(𝛄𝛄 = 𝟎𝟎.𝟐𝟐𝟐𝟐 ). As stated in Interpretation 1, smaller cluster size leads to better performances (i.e., higher 

correct decoding rates). 
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The amount of PIM overhead can be computed as  

 
2

2 ( 2 ) 100log −

=

×∑
n

i

iM
L  [%]                                          (12)                                            

if 1∆ , …, n∆  are included in the PIM [15]. Based on (9), data transfer rate is linearly 
proportional to cluster size, i.e., 128 10 /1R λ= ⋅ ⋅ . Hence, the data transfer rates are presented 
together with cluster sizes in Fig. 4. The performance of the proposed approach is compared 
with that of an existing state-of-the art approach [13], which corresponds to the case of no 
PIM. 

The simulation results indicate that the proposed approach always outperforms the existing 
algorithm [13], as the proposed approach is designed by considering the PIM and cluster size. 
More specifically, the probability of correct decoding significantly decreases as cluster size 
increases if packet loss occurs in transmission (i.e., 0γ > ). If a PIM is provided, however, the 
probability of correct decoding improves as more PIMs are included. Moreover, it is observed 
that higher PIM overhead can lower the speed at which the probability of correct decoding 
degrades. Therefore, an optimal cluster size can be determined by taking into account the PIM 
overhead and a target decoding performance given network conditions (i.e., packet loss rates). 

Fig. 4. Achieved results for trade-off between performance measure (probability of correct decoding) 
and data transfer rate according to (9). 
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6. Conclusion 
In this paper, the impact of cluster size on the approximate decoding performance and the 

data transfer rate is analytically investigated. The approximate decoding performance with a 
PIM is quantitatively evaluated, and it is shown that the performance only depends on the 
number of packets. Given the packet loss rates of networks, a smaller cluster size enhances the 
approximate decoding performance at the cost of data transfer rate degradation. Based on 
these findings, cluster sizes of error-prone networks can be optimized in order to meet target 
performance.  

Appendix A  

In Appendix A, the proof of the property in Section 4.1 is presented. Let R∆  be a random 

variable for i∆ . Recall that i∆  is an element of 1t t t+ ⊕=Δ x x , which describes the source 

correlation in the GF . We first consider the case where 2k∆ = . As shown in [15], the 
probability that R i∆ = ∆  is  

 
( )

( )

2Pr( )
2 1

M k i

R i M k

− −

−∆ = ∆ =
−

                                                 (13) 

where 1 i M k≤ ≤ −  and (2 )MGF . Thus, the probability that R∆  is one of 1∆ , 2∆ , … , 

 (1 n M k≤ ≤ −  ) included in tΔ  can be expressed as  

 
1

1
( )

( )
1

Pr( { , , }) Pr( )

2 .
2 1

n

R n R i
i

M k in

M k
i

=

− −

−
=

∆ ∈ ∆ … ∆ = ∆ = ∆

=
−

∑

∑
                                  (14) 

When lN  packets are not available in the decoding process, the approximate decoding is 

deployed in conjunction with a PIM including the position information, 2∆ ,… , n∆ . The 
probability of correct decoding when a PIM is provided can be expressed as 
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In (15), the impact of i∆  in a PIM on the decoding performance is assumed to be 

independent. Moreover, ( ) ( )ˆPr( | ) Pr( )i i
i R i= ∆ = ∆ = ∆x x . Since n  and M  are given 

parameters by the encoder and k  is determined by the source characteristics, the performance 
in (15) depends only on lN . Furthermore, since n M k≤ −  and 2 / 2 1M k i M k− − − −  is 
nonnegative, 
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Based on (15), (16) can be written as  
( ) ( )

1ˆPr( | , , , ) lNi i
n lN α= ∆ … ∆ =x x                                    (17) 

where 1α ≤ , concluding that the probability of correct decoding is a non-increasing function 
of lN . 

In the case where 2k∆ ≠ , let Pr( )R i ip∆ = ∆ =  in (13); correspondingly, 

 1
1

Pr( { , , }) 1.
n

R n i
i

p
=

∆ ∈ ∆ … ∆ = ≤∑                                      (18) 

Then, ( ) ( )
1ˆPr( | , , , )i i

n lN= ∆ … ∆x x  given in (15) can be expressed as  

( ) ( )
1

1

ˆPr( | , , , )
lNn

i i
n l i

i
N p

=

 = ∆ … ∆ =  
 
∑x x

                            (19) 
which also indicates that the probability of correct decoding is a non-increasing function of 

lN . 

Therefore, the performance of approximate decoding improves as lN  decreases, 
completing the proof. 

■ 
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