• Title/Summary/Keyword: equivalent geometrical model

Search Result 55, Processing Time 0.032 seconds

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Dynamically equivalent element for an emboss embedded in a plate (평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성)

  • Song, Kyung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.301-305
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. An equivalent element produced here lessen the cost by representing the geometrical characteristics of an emboss using the element's material properties and thickness becoming a geometrically homogenous element of the base plate or shell. Some efficient factors which let the equivalent system have the same dynamical response as the original system embedded with emboss will be shown and the degree of equivalence will be tested in terms of natural frequency matching.

  • PDF

A study on the conversion of the formula for the area of a trapezoid (사다리꼴 넓이 공식의 변환에 관한 연구)

  • Chung, Young Woo
    • East Asian mathematical journal
    • /
    • v.31 no.2
    • /
    • pp.167-188
    • /
    • 2015
  • Formula for the area of a trapezoid is an educational material that can handle algebraic and geometric perspectives simultaneously. In this note, we will make up the expression equivalent algebraically to the formula for the area of a trapezoid, and deal with the conversion of a geometric point of view, in algebraic terms of translating and interpreting the expression geometrically. As a result, the geometric conversion model, the first algebraic model, the second algebraic model are obtained. Therefore, this problem is a good material to understand the advantages and disadvantages of the algebraic and geometric perspectives and to improve the mathematical insight through complementary activity. In addition, these activities can be used as material for enrichment and gifted education, because it helps cultivate a rich perspective on diverse and creative thinking and mathematical concepts.

Investigation of equivalent spherical bubble diameter at high inlet velocity pool scrubbing conditions

  • Erol Bicer;Soon-Joon Hong;Hyoung Kyu Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4307-4326
    • /
    • 2024
  • This study investigates Equivalent Spherical Diameter (ESD) estimation at high inlet velocity pool scrubbing conditions using the Interfacial Area Transport Equation (IATE) diameter model including bubble-induced turbulence and interphase modeling. The compatibility of area-averaged Sauter Mean Diameter (SMD), areaaveraged Local Equivalent Diameter (LED) and void-weighted area-averaged LED approaches to estimate the ESD are explored and the proposed model is validated against available experimental data. The study reveals that the prevalent constant ESD assumption in pool scrubbing codes is not universal by showcasing a decreasing trend along the column due to intensive bubble breakup. The area-averaged LED approach fails to capture this trend, while the area-averaged SMD and void-weighted area-averaged LED approaches provide accurate estimations aligned with experimental data. Turbulence parameters, interfacial forces, and diameter modeling are identified as crucial for accurate predictions of flow and geometrical variables by setting up the OpenFOAM framework. A sensitivity analysis indicates that the inlet velocity has an acceptable effect on the ESD along the column. The ESD increases near the exit and decreases in the swarm region by increasing the inlet velocities. Turbulent intensity reduces ESD across all column sections while changes in aspect ratio minimally impact ESD. The study shows promise in developing correlations that take into account the spatial variation of ESD in pool scrubbing conditions.

Static analysis of cutout microstructures incorporating the microstructure and surface effects

  • Alazwari, Mashhour A.;Abdelrahman, Alaa A.;Wagih, Ahmed;Eltaher, Mohamed A.;Abd-El-Mottaleb, Hanaa E.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.583-597
    • /
    • 2021
  • This article develops a nonclassical model to analyze bending response of squared perforated microbeams considering the coupled effect of microstructure and surface stress under different loading and boundary conditions, those are not be studied before. The corresponding material and geometrical characteristics of regularly squared perforated beams relative to fully filled beam are obtained analytically. The modified couple stress and the modified Gurtin-Murdoch surface elasticity models are adopted to incorporate the microstructure as well as the surface energy effects. The differential equations of equilibrium including the Poisson's effect are derived based on minimum potential energy. Exact closed form solution is obtained for bending behavior of the proposed model considering the classical and nonclassical boundary conditions for both uniformly distributed and concentrated loads. The proposed model is verified with results available in the literature. Influences of the microstructure length scale parameter, surface energy, beam thickness, boundary and loading conditions on the bending behavior of perforated microbeams are investigated. It is observed that microstructure and surface parameters are vital in investigation of the bending behavior of perforated microbeams. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams that commonly used in nanoactuators, nanoswitches, MEMS and NEMS systems.

A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects

  • Shokravi, Maryam
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.333-338
    • /
    • 2017
  • In this paper, nonlinear vibration of embedded nanocomposite concrete is investigated based on Timoshenko beam model. The beam is reinforced by with agglomerated silicon dioxide (SiO2) nanoparticles. Mori-Tanaka model is used for considering agglomeration effects and calculating the equivalent characteristics of the structure. The surrounding foundation is simulated with Pasternak medium. Energy method and Hamilton's principal are used for deriving the motion equations. Differential quadrature method (DQM) is applied in order to obtain the frequency of structure. The effects of different parameters such as volume percent of SiO2 nanoparticles, nanoparticles agglomeration, elastic medium, boundary conditions and geometrical parameters of beam are shown on the frequency of system. Numerical results indicate that with increasing the SiO2 nanoparticles, the frequency of structure increases. In addition, considering agglomeration effects leads to decrease in frequency of system.

An Analytical Study on Torsional Excitation Force of an Engine and Propeller Shaft (엔진과 추진축의 비틀림 가진력에 관한 해석적 연구)

  • Kim, Byoung-Sam;Chang, Il-Do;Rhee, Bong-Goo;Mun, Sang-Don
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • Torque fluctuation of an engine and angular velocity variation of a propeller shaft are the main excitation sources in a vehicle driveline. This paper presents the mechanism of these excitation sources. An equivalent model of the engine system and propeller shaft system is constructed to simulate the excitation phenomena. The analytical model contains the geometrical and dynamic mechanism. Combustion pressure of the cylinder is measured from dynamometer. The computer simulation is carried out by commercial program package. Results of the simulations show the characteristics of the torsional excitation source of the driveline.