DOI QR코드

DOI QR Code

Investigation of equivalent spherical bubble diameter at high inlet velocity pool scrubbing conditions

  • Erol Bicer (Seoul National University, Department of Nuclear Engineering) ;
  • Soon-Joon Hong (FNC Technology, Heungdeok IT Valley) ;
  • Hyoung Kyu Cho (Seoul National University, Department of Nuclear Engineering)
  • Received : 2024.02.06
  • Accepted : 2024.05.25
  • Published : 2024.10.25

Abstract

This study investigates Equivalent Spherical Diameter (ESD) estimation at high inlet velocity pool scrubbing conditions using the Interfacial Area Transport Equation (IATE) diameter model including bubble-induced turbulence and interphase modeling. The compatibility of area-averaged Sauter Mean Diameter (SMD), areaaveraged Local Equivalent Diameter (LED) and void-weighted area-averaged LED approaches to estimate the ESD are explored and the proposed model is validated against available experimental data. The study reveals that the prevalent constant ESD assumption in pool scrubbing codes is not universal by showcasing a decreasing trend along the column due to intensive bubble breakup. The area-averaged LED approach fails to capture this trend, while the area-averaged SMD and void-weighted area-averaged LED approaches provide accurate estimations aligned with experimental data. Turbulence parameters, interfacial forces, and diameter modeling are identified as crucial for accurate predictions of flow and geometrical variables by setting up the OpenFOAM framework. A sensitivity analysis indicates that the inlet velocity has an acceptable effect on the ESD along the column. The ESD increases near the exit and decreases in the swarm region by increasing the inlet velocities. Turbulent intensity reduces ESD across all column sections while changes in aspect ratio minimally impact ESD. The study shows promise in developing correlations that take into account the spatial variation of ESD in pool scrubbing conditions.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106032-0121-CG100).

References

  1. M. Ishii, Thermo-fluid Dynamic Theory of Two-phase Flow, vol. 22, Eyrolles, Editeur (Collection de la Direction des Etudes et Recherches d'Electricite de France, Paris, 1975. 
  2. I. Leibson, E.G. Holcomb, A.G. Cacoso, J.J. Jacmic, Rate of flow and mechanics of bubble formation from single submerged orifices. II. Mechanics of bubble formation, AIChE J. 2 (1956) 300-306, https://doi.org/10.1002/aic.690020306. 
  3. D.N. Miller, Scale-up of Agitated Vessels gas-liquid mass transfer, AIChE J. 20 (1974) 445-453, https://doi.org/10.1002/aic.690200303. 
  4. M. Moo-Young, H.W. Blanch, Design of biochemical reactors mass transfer criteria for simple and complex systems, in: Reactors and Reactions, Advances in Biochemical Engineering, 1981, pp. 1-69, https://doi.org/10.1007/3-540-10464-x_16. 
  5. USNRC, RELAP5/MOD3.3 Code Manual, Information Systems Laboratories, Idaho, 2006. 
  6. KINS, MARS-KS Manual Volume V: Model and Correlations, KINS, Korea, 2009. 
  7. G.P. Flach, FLOWTRAN-TF code description, SRS, Aiken. https://doi.org/10.2172/5029419, 1990. 
  8. I.I.I. Smith, S.Y. Lee, G.P. Flach, L.L. Hamm, Two-phase Interfacial Area and Flow Regime Modeling in FLOWTRAN-TF Code, 1992. 
  9. G.I. Taylor, R.M. Davies, The rate of rise of large volumes of gas in water, in: Reproduced in Underwater Explosions Research, vol. 2, 1944. 
  10. H.N. Temperley, L.G. Chambers, The rate of rise of large volumes of gas in, Water, Underwater Explosions Res. 2 (1950) 434. 
  11. J.R. Grace, T. Wairegi, J. Brophy, Break-up of Drops and bubbles in stagnant Media, Can. J. Chem. Eng. 56 (1978) 3-8, https://doi.org/10.1002/cjce.5450560101. 
  12. H.M. Hulburt, S. Katz, Some Problems in particle technology: a statistical mechanical formulation, Chem. Eng. Sci. 19 (1964) 555-574, https://doi.org/10.1016/0009-2509(64)85047-8. 
  13. Doraiswami Ramkrishna, Population Balances, Elsevier, 2000. 
  14. K.J. Valentas, N.R. Amundson, Breakage and coalescence in dispersed phase systems, Ind. Eng. Chem. Fundam. 5 (1966) 533-542, https://doi.org/10.1021/i160020a018. 
  15. C.A. Coulaloglou, L.L. Tavlarides, Description of interaction processes in Agitated liquid-liquid dispersions, Chem. Eng. Sci. 32 (1977) 1289-1297, https://doi.org/10.1016/0009-2509(77)85023-9. 
  16. R. McGraw, Description of aerosol dynamics by the Quadrature method of moments, Aerosol. Sci. Technol. 27 (1997) 255-265, https://doi.org/10.1080/02786829708965471. 
  17. R. Fan, D.L. Marchisio, R.O. Fox, Application of the direct Quadrature method of moments to Polydisperse gas-solid Fluidized Beds, Powder Technol. 139 (2004) 7-20, https://doi.org/10.1016/j.powtec.2003.10.005.
  18. G. Kocamustafaogullari, M. Ishii, Foundation of the interfacial area transport equation and its closure relations, Int. J. Heat Mass Tran. 38 (1995) 481-493, https://doi.org/10.1016/0017-9310(94)00183-v. 
  19. Q. Wu, S. Kim, M. Ishii, S.G. Beus, One-group interfacial area transport in vertical bubbly flow, Int. J. Heat Mass Tran. 41 (1998) 1103-1112, https://doi.org/10.1016/s0017-9310(97)00167-1. 
  20. S.A. Orszag, Analytical Theories of turbulence, J. Fluid Mech. 41 (1970) 363-386, https://doi.org/10.1017/s0022112070000642. 
  21. D.Z. Zhang, A. Prosperetti, A.S. Sangani, Direct numerical simulation of bubble behavior in oscillatory flow, J. Acoust. Soc. Am. 89 (1991), https://doi.org/10.1121/1.2029905, 2015-2015. 
  22. K.J. Kang, J.H. Chun, H.O. Kang, S.S. Jeon, S.J. Hong, Evaluation of Passive Containment Pressure Suppression and Radioactivity for SMR, vol. 50, Korean Nuclear Society, 2018. 
  23. P.C. Owczarski, K.W. Burk, SPARC-90: a Code for Calculating Fission Product Capture in Suppression Pools, PNL, 1991. https://doi.org/10.2172/6120360. 
  24. J. Lopez-Jimenez, L. Herranz, M. Escudero, M. Espigares, V. Peyres, J. Polo, C. Kortz, M. Koch, U. Brockmeier, H. Unger, L. Dutton, C. Smedley, W. Trow, A. Jones, E. Bonanni, M. Calvo, A. Alonso, Pool Scrubbing, 1996. 
  25. A. Dehbi, S. Guentay, D. Suckow, Design of the test matrix for POSEIDON pool scrubbing experiments using the BUSCA-PSI code, J. Aerosol Sci. 25 (1994) 275-276, https://doi.org/10.1016/0021-8502(94)90368-9. 
  26. A.T. Wassel, A.F. Mills, D.C. Bugby, R.N. Oehlberg, Analysis of Radionuclide retention in water pools, Nucl. Eng. Des. 90 (1985) 87-104, https://doi.org/10.1016/0029-5493(85)90033-0. 
  27. KAERI, Verification and Validation Report for PIAERO Code, KAERI, Daejon, 2016. 
  28. L. Humphries, R. Cole, D. Louie, V. Figueroa, M. Young, MELCOR 2.2 Computer Code Manual-Volume 2-Reference Manual, 2017. 
  29. L.E. Herranz, V. Peyres, J. Polo, M.J. Escudero, M.M. Espigares, J. Lopez-Jimenez, Experimental and Analytical study on pool scrubbing under JET injection regime, Nucl. Technol. 120 (1997) 95-109, https://doi.org/10.13182/nt97-a35419. 
  30. Y. Abe, K. Fujiwara, S. Saito, T. Yuasa, A. Kaneko, Bubble dynamics with aerosol during pool scrubbing, Nucl. Eng. Des. 337 (2018) 96-107, https://doi.org/10.1016/j.nucengdes.2018.06.017. 
  31. Y.H. Kim, D.H. Kam, J. Yoon, Y.H. Jeong, The importance of representative aerosol diameter and bubble size distribution in pool scrubbing, Ann. Nucl. Energy 147 (2020) 107712, https://doi.org/10.1016/j.anucene.2020.107712. 
  32. G. Zablackaite, H. Nagasaka, H. Kikura, Experimental study on bubble parameters for pool scrubbing models under Wetwell venting conditions, J. Nucl. Sci. Technol. 57 (2020) 766-781, https://doi.org/10.1080/00223131.2020.1720847. 
  33. Tokyo Electric Power Company, The 4th Progress Report on the Investigation and Examination of Unconfirmed and Unresolved Issues on the Development Mechanism of the Fukushima Daiichi Nuclear Accident, TEPCO, Press Release, 2015. 
  34. G. Wallis, One-Dimensional Two-phase Flow, Mcgraw-Hill, New York, 1969. 
  35. J.H. Hills, R. Darton, The Rising Velocity of a Large Bubble in a Bubble Swarm, Transactions of the Institution of Chemical Engineers, 1976, pp. 258-264. 
  36. J.R. Grace, Slug Flow, Essentials of Fluidization Technology, 2020, pp. 153-162, https://doi.org/10.1002/9783527699483.ch8. 
  37. Y.T. Shah, B.G. Kelkar, S.P. Godbole, W.-D. Deckwer, Design parameters estimations for bubble column reactors, AIChE J. 28 (1982) 353-379, https://doi.org/10.1002/aic.690280302. 
  38. R. Beinhauer, Dynamic Measurement of the Relative Gas Contents in Bubble Columns by Means of X-Ray Absorption, 1971. PhD Thesis. 
  39. H.F. Bach, T. Pilhofer, Variation of gas holdup in bubble column with Physical properties of liquids and operating parameters of columns, Ger. Chem. Eng. 1 (1978) 270-275. 
  40. M. Ishii, T. Hibiki, Thermo-fluid Dynamics of Two-phase Flow, Springer Science & Business Media, 2006. 
  41. M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, Droplet or particulate flows, AIChE J. 25 (1979) 843-855, https://doi.org/10.1002/aic.690250513. 
  42. M. Ishii, K. Mishima, Study of Two-Fluid Model and Interfacial Area, 1980. 
  43. G. Kocamustafaogullari, W.D. Huang, J. Razi, Measurement and modeling of average void fraction, bubble size and interfacial area, Nucl. Eng. Des. 148 (1994) 437-453, https://doi.org/10.1016/0029-5493(94)90124-4. 
  44. A.Y. Lafi, J.N.Jr. Reyes, General Particle Transport Equation, Oregon State University, United States, 1994, https://doi.org/10.2172/41403. Final Report. 
  45. G. Kocamustafaogullari, M. Ishii, Interfacial area and Nucleation site density in Boiling systems, Int. J. Heat Mass Tran. 26 (1983) 1377-1387, https://doi.org/10.1016/s0017-9310(83)80069-6. 
  46. J. Reyes, Statistically derived conservation equations for fluid particle flows, in: Transactions of the American Nuclear Society, United States, 1989. 
  47. I. Kataoka, A. Serizawa, Interfacial area concentration in bubbly flow, Nucl. Eng. Des. 120 (1990) 163-180, https://doi.org/10.1016/0029-5493(90)90370-d. 
  48. M.J. Prince, H.W. Blanch, Bubble coalescence and break-up in air-sparged bubble columns, AIChE J. 36 (1990) 1485-1499, https://doi.org/10.1002/aic.690361004. 
  49. S.T. Revankar, M. Ishii, Local interfacial area measurement in bubbly flow, Int. J. Heat Mass Tran. 35 (1992) 913-925, https://doi.org/10.1016/0017-9310(92)90257-s. 
  50. C. Morel, N. Goreaud, J.-M. Delhaye, The local Volumetric interfacial area transport equation: Derivation and Physical significance, Int. J. Multiphas. Flow 25 (1999) 1099-1128, https://doi.org/10.1016/s0301-9322(99)00040-3. 
  51. S. Kim, Interfacial Area Transport Equation and Measurement of Local Interfacial Characteristics, Ph.D. Dissertation, 1999. 
  52. A. Shraiber, Comments on "Foundation of the Interfacial Area Transport Equation and its Closure Relations,", 1996. 
  53. T. Hibiki, M. Ishii, One-group interfacial area transport of bubbly flows in vertical round Tubes, Int. J. Heat Mass Tran. 43 (2000) 2711-2726, https://doi.org/10.1016/s0017-9310(99)00325-7. 
  54. T. Hibiki, T. Takamasa, M. Ishii, Interfacial area transport of bubbly flow in a small diameter pipe, J. Nucl. Sci. Technol. 38 (2001) 614-620, https://doi.org/10.1080/18811248.2001.9715074. 
  55. M. Ishii, S. Kim, J. Kelly, Development of interfacial area transport equation, Nucl. Eng. Technol. 37 (2005) 525-536. https://koreascience.kr/article/JAKO200511722709708.page. 
  56. T.R. Smith, J.P. Schlegel, T. Hibiki, M. Ishii, Mechanistic modeling of interfacial area transport in large diameter pipes, Int. J. Multiphas. Flow 47 (2012) 1-16, https://doi.org/10.1016/j.ijmultiphaseflow.2012.06.009. 
  57. OpenFOAM Foundation, OpenFOAM | Free CFD Software | The OpenFOAM Foundation, Openfoam.org. (n.d.). https://openfoam.org/. 
  58. S. Li, P. Apanasevich, D. Lucas, Y. Liao, Euler-euler CFD simulation of high velocity gas injection at pool scrubbing conditions, experimental, and computational multiphase flow. https://doi.org/10.1007/s42757-022-0149-3, 2023. 
  59. H.A. Jakobsen, B.H. Sannaes, S. Grevskott, H.F. Svendsen, Modeling of vertical bubble-driven flows, Ind. Eng. Chem. Res. 36 (1997) 4052-4074, https://doi.org/10.1021/ie970276o. 
  60. A. Lapin, A. Lubbert, Numerical simulation of the dynamics of two-phase gas-liquid flows in bubble columns, Chem. Eng. Sci. 49 (1994) 3661-3674, https://doi.org/10.1016/0009-2509(94)e0121-6. 
  61. M. Ishii, K. Mishima, Two-fluid model and hydrodynamic constitutive relations, Nucl. Eng. Des. 82 (1984) 107-126, https://doi.org/10.1016/0029-5493(84)90207-3. 
  62. O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Proc. Roy. Soc. Lond. 56 (1894) 40-45, https://doi.org/10.1098/rspl.1894.0075. 
  63. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3 (1974) 269-289, https://doi.org/10.1016/0045-7825(74)90029-2. 
  64. Y. Pan, M.P. Dudukovic, M. Chang, Dynamic simulation of bubbly flow in bubble columns, Chem. Eng. Sci. 54 (1999) 2481-2489, https://doi.org/10.1016/s0009-2509(98)00453-9. 
  65. Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiphas. Flow 2 (1975) 79-95, https://doi.org/10.1016/0301-9322(75)90030-0. 
  66. D. Pfleger, S. Becker, Modelling and simulation of the dynamic flow Behaviour in a bubble column, Chem. Eng. Sci. 56 (2001) 1737-1747, https://doi.org/10.1016/s0009-2509(00)00403-6. 
  67. J. Smagorinsky, General Circulation experiments with the Primitive equations, Mon. Weather Rev. 91 (1963) 99-164, https://doi.org/10.1175/1520-0493(1963)091%3C0099:gcewtp%3E2.3.co;2. 
  68. C. Braga Vieira, G. Litrico, E. Askari, G. Lemieux, P. Proulx, Hydrodynamics of bubble columns: turbulence and population balance model, Chem.Eng. 2 (2018) 12, https://doi.org/10.3390/chemengineering2010012. 
  69. R.T. Lahey, The simulation of multidimensional multiphase flows, Nucl. Eng. Des. 235 (2005) 1043-1060, https://doi.org/10.1016/j.nucengdes.2005.02.020. 
  70. G. Arnold, D. Drew, T. Lahey, Derivation of constitutive equations for interfacial force and Reynolds stress for a Suspension of spheres using Ensemble cell averaging, Chem. Eng. Commun. 86 (1989) 43-54, https://doi.org/10.1080/00986448908940362. 
  71. E. Bicer, S. Li, Y. Liao, Estimation of turbulence parameters in pool scrubbing conditions, in: HZDR Multiphase Workshop, 2023. 
  72. L. Shiller, A. Naumann, A drag coefficient correlation, Zeitschrift Des Vereins Deutscher Ingenieure. 77 (1935) 318-320. 
  73. A. Tomiyama, G.P. Celata, S. Hosokawa, S. Yoshida, Terminal velocity of single bubbles in surface Tension force dominant regime, Int. J. Multiphas. Flow 28 (2002) 1497-1519, https://doi.org/10.1016/s0301-9322(02)00032-0. 
  74. D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Springer New York, New York, NY, 1999, https://doi.org/10.1007/b97678. 
  75. J.O. Hinze, Fundamentals of the hydrodynamic mechanism of Splitting in dispersion processes, AIChE J. 1 (1955) 289-295, https://doi.org/10.1002/aic.690010303. 
  76. M. Sevik, Sung Keun Park, the Splitting of Drops and bubbles by turbulent fluid flow, J. Fluid Eng. 95 (1973) 53-60, https://doi.org/10.1115/1.3446958. 
  77. D. Lewis, J. Davidson, Bubble Splitting in shear flow, Trans. Inst. Chem. Eng. 60 (1982) 283-291. 
  78. E. Bicer, S.-J. Hong, S.-S. Jeon, Bubble diameter evaluation in pool scrubbing geometries, in: Proceedings of ICAPP, 2023. 
  79. K. Yoshida, K. Fujiwara, Y. Nakamura, A. Kaneko, Y. Abe, Experimental study of interfacial area of bubble Plume based on bubble Tracking by wire-mesh sensor, Nucl. Eng. Des. (2022) 388. 
  80. R. Xu, Particle Characterization: Light Scattering Methods, Springer Science & Business Media, 2006. 
  81. K. Fujiwara, K. Yoshida, Y. Nakamura, Sasuke Kadoma, A. Kaneko, Y. Abe, Investigation of aerosol transportation phenomena in pool scrubbing by Combining bubble Plume measurements and single-bubble mass transfer analysis, Ann. Nucl. Energy 196 (2024), https://doi.org/10.1016/j.anucene.2023.110207, 110207-110207. 
  82. K. Akita, F. Yoshida, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns, Ind. Eng. Chem. Process Des. Dev. 13 (1974) 84-91, https://doi.org/10.1021/i260049a016.
  83. A. Kumar, T.E. Degaleesan, G.S. Laddha, H.E. Hoelscher, Bubble swarm characteristics in bubble columns, Can. J. Chem. Eng. 54 (1976) 503-508, https://doi.org/10.1002/cjce.5450540525. 
  84. R. Pohorecki, W. Moniuk, P. Bielski, P. Sobieszuk, G. Dabrowiecki, Bubble diameter correlation via numerical experiment, Chem. Eng. J. 113 (2005) 35-39, https://doi.org/10.1016/j.cej.2005.08.007. 
  85. N. Jamshidi, N. Mostoufi, Investigating bubble dynamics in a bubble column containing shear Thinning liquid using a Dual-tip probe, Exp. Therm. Fluid Sci. 94 (2018) 34-48, https://doi.org/10.1016/j.expthermflusci.2018.01.034. 
  86. A. Kanaris, T. Pavlidis, A. Chatzidafni, A. Mouza, The effects of the properties of Gases on the design of bubble columns Equipped with a fine Pore sparger, Chem. Eng. 2 (2018) 11, https://doi.org/10.3390/chemengineering2010011. 
  87. S. Azizi, A. Yadav, Y.M. Lau, U. Hampel, S. Roy, M. Schubert, Hydrodynamic correlations for bubble columns from complementary UXCT and RPT measurements in Identical geometries and conditions, Chem. Eng. Sci. 208 (2019), https://doi.org/10.1016/j.ces.2019.07.017, 115099-115099. 
  88. J. Bak, H. Kim, J.J. Jeong, D. Euh, B. Yun, Development of bubble size correlation for adiabatic forced Convective bubbly flow in low pressure condition using CFD code, Appl. Sci. 10 (2020) 5443, https://doi.org/10.3390/app10165443. 
  89. W. Gestrich, W. Krauss, Die Spezifische Phasengrenzflache in Blasenschichten, Chem. Ing. Tech. 47 (1975) 360-367, https://doi.org/10.1002/cite.330470903. 
  90. G. Besagni, F. Inzoli, The effect of liquid phase properties on bubble column fluid dynamics: gas holdup, flow regime transition, bubble size distributions and shapes, interfacial areas and Foaming phenomena, Chem. Eng. Sci. 170 (2017) 270-296, https://doi.org/10.1016/j.ces.2017.03.043.