• Title/Summary/Keyword: equation of straight line

Search Result 70, Processing Time 0.026 seconds

Revisiting Linear Equation and Slope in School Mathematics : an Algebraic Representation and an Invariant of Straight Line (직선의 대수적 표현과 직선성(直線性)으로서의 기울기)

  • Do, Jong-Hoon
    • Communications of Mathematical Education
    • /
    • v.22 no.3
    • /
    • pp.337-347
    • /
    • 2008
  • 'Slope' is an invariant of a straight line and 'Linear Equation' is an algebraic representation of a straight line in the cartesian plane. The concept 'slope' is necessary for algebraically representing a geometrical figure, line. In this article, we investigate how those concepts are dealt with in school mathematics and suggest some improvement methods.

  • PDF

Straight-line Path Error Reduction for the End of a Flexible Beam Deploying from a Rotating Rigid Hub (회전하는 강체허브에서 전개하는 보 끝단의 직선궤적오차 저감)

  • Kim, Byeongjin;Kim, Hyungrae;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.898-906
    • /
    • 2014
  • This paper presents a reduction method for a straight-line path error of a flexible beam deploying from a rotating rigid hub. Previous studies discussed about only vibration phenomena of flexible beams deploying from rotating hubs; however, this study investigates a vibration reduction of a rotating beam with variable length. The equation of motion and associated boundary conditions are derived for a flexible beam deploying from a rotating rigid hub, and then they are transformed to a variational equation. By applying the Galerkin method, the discretized equations are obtained from the variational equation. Based on the discretized equations, the dynamic responses of a rotating/deploying beam are analyzed when the beam end has a straight line motion. A reduction method for the trajectory error is proposed, using the average length of a rotating/deploying beam. It is shown that the proposed method is able to reduce the residual vibration of a rotating/deploying beam.

Estimation of Straight Line Stability of a Damaged Surface Combatant through Spiral Maneuver Test Model Considering Asymmetry (비대칭성이 고려된 나선형 시험 모델을 통한 손상 수상함의 직진 안정성 추정)

  • Ha, Jeong Soo;Jeong, Yeon Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.110-117
    • /
    • 2020
  • In this paper, we estimated the straight line stability by performing a 3 degree of freedom spiral test simulation of a intact/damaged surface combatant using the hydrodynamic coefficient obtained through the PMM(Planar motion mechanism) test based on system engineering process. A model ship was ONR Tumblehome and damaged compartment was set on the starboard bow. As a result of conducting a spiral test simulation based on the experimental results of J.Ha (2018), the asymmetric straight line stability due to the damaged compartment was confirmed. In the case of a ship in which the starboard bow was damaged, it was confirmed that it had the characteristic to deflect to the left when going straight. Also, when estimating the straight line stability of a both port and starboard asymmetric surface combatant, a separated equation of motion model that sees the port and starboard as different ships seems suitable.

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Modeling and Motion Control of Mobile Robot for Lattice Type Welding

  • Jeon, Yang-Bae;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.83-93
    • /
    • 2002
  • This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90$^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.

Motion Control of Mobile Robot with Arc Sensor for Lattice Type Welding (아크센서를 적용한 격자형 용접용 모빌 로봇의 제어)

  • Jeon, Yang-Bae;Han, Young-Dae;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.319-324
    • /
    • 2001
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or corner. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The experiment has been done to verify the effectiveness of the proposed controllers. These results are shown to fit well by the simulation results.

  • PDF

Geometric Distortion Compensation of Projector Image based on Equation of Straight Line (직선의 방정식을 기반으로 한 프로젝터 영상의 기하왜곡 보정)

  • Jung, Jung-Il;Cho, Jin-Soo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.27-35
    • /
    • 2010
  • In this paper, we propose a method that can compensate the geometric distortions of image caused from an arbitrary nonflat display surface(or wall) under the environment of portable overhead projector without a flat screen. In the proposed method, we first project a grid pattern to an arbitrary nonflat display surface and then derive an equation of straight line that represents the geometry relationship between the distorted grid pattern and the original grid pattern. Next, after determining the proper size of the original grid pattern according to the form of the display surface, we generate a compensation pattern from the derived equation of straight line, which can symmetrically compensate for the distorted image. Finally, we compensate for the geometric distortions of the projected image by segmenting the real image to be projected from portable overhead projector and prewarping it according to the compensation pattern. To evaluate the proposed method, we performed experiments of image compensation on inclined surface, bent surface and curved surface that are frequently occurred in the environment of portable overhead projector without a flat screen. From the experimental results, we found that the proposed method could be very effective in compensating for the general types of the geometric distortions of the projected images.

A Study on the Integrated Computer Program for the Multi Analysis of In-Situ Aquifer and Geothermal Response Test (현장 열응답시험과 현장 대수성시험결과를 동시 분석 가능한 통합전산 Program에 관한 연구)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Yonn, Yun-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • Groundwater flow in confined aquifer and heat transport in underground geologic media are using same governing equation(line source) like well fuction. Therefore the conventional slope method using only later data obtained from in-situ thermal response test to determine the thermal conductivity of vertical geothermal heat exchanger(GHEX) is basically identical with one of Theis straight line method of aquifer test under artesian condition. In case that the pumping rate(Q, $m^3$/d) and drawdown(s,m) which are used for input data of existing hydrogeologic computer programs for aquifer test are replaced and converted to supplying heat energy per unit length of bore hole(Q/L,w/m or Kcal/h.m) and temperatures (T,$^{\circ}C$)measured at in and out-let of GHEX as in put data respectively, thermal conductivity around geothermal heat exchanger can be easily estimated without any special modification of the existing hydrogeologic computer program. Two numbers of time series temperature variation data obtained from in situ geothermal response test are analized using Theismethods(standard curve and straight line method) by using existing aquifer test program and conventional Slope method proposed by ASHRAE. The results show that thermal conductivity values estimated by two straight methods are identical and the difference of estimated values between standard curve methods and Slope method are also within acceptable ranges. In general,the thermal conductivity estimated from Theis straight linemethod gives more accurate value than the one of Slope method due to that Slope method uses only visual matching otherwise Theis method uses automatic curve matching estimation with reducing RSS.

  • PDF

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

Temperature Dependence of Electrical Characteristics of AIGaAs/GaAs Heterojunction Bipolar Transistors (AIGaAs/GaAs 이종접합 바이폴라 트랜지스터의 온도 변화에 따른 전기적 특성에 대한 연구)

  • 박문평;이태우;김일호;박성호;편광의
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.349-352
    • /
    • 1996
  • When the ideality factor of collector current of AIGaAs/GaAs Heterojunction Bipolar Transistors (HBTs) is larger than unity, conventional $I_{CO}$ / $T^2$ versus 1000/T plot used in the determination of the barrier height of base-emitter junction of HBT was deviated from the straight line. We introduced the effective temperature $T_{eff}$ as nT in the Thermionic-emission equation. The modified $I_{CO}$ /TB versus 1000/ $T_{eff}$ plot was on the straight line in the temperature range considered. The activation energy obtained from the modified plot is 1.61 eV. The conduction band discontinuity calculated using this value was 0.305 eV and this value is coincident with the generally accepted value of 0.3 eV. eV.

  • PDF