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Abstract: Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight
rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-
cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method
with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite
element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model

using SUPG(Streamline upwind Petrov-Galerkin) method.

Keywords: advection-dispersion equation, meandering channel, experiments, Galerkin method, upwind FEM, SUPG

method

1. INTRODUCTION

The traditional one-dimensional advection-
dispersion model is not applicable until the end
of an initial period, which is the time required
for the cross-sectional concentration distribution
to become nearly uniform and independent of
the geometrical configuration of the source. The
initial period restriction can be a serious prob-
lem for wide rivers since the length of the initial
period may be the same order as the length of
the entire reach under consideration (Basha,
1997). So, it will be necessary to use a
multi-dimensional model when the initial mix-
ing is considered to be important.

A three-dimensional model will be adequate
to simulate the complicate river mixing accu-
rately but it requires considerable time and cost
which make the model inefficient. Moreover,
particularly in natural river, the scale of depth is
almost negligible compared to the magnitude of
river width, so the vertical mixing is completed
much faster than the transverse mixing. Thus, in
this study, the two-dimensional model is chosen
to investigate the longitudinal and transverse
mixing in the open channel.

The numerical modeling for the two- dimen-
sional advection-dispersion equation has been
attempted by the finite difference approximation.
Motivated by the fact that the propagation of
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information is in the direction of flow velocity,
the finite difference practitioners Runchell et
al.(1969), Spalding(1972), and Barrett(1974)
were the first to overcome the approximation
problem using various formulae which combine
central and backward differences. However the
finite difference method has a limitation in grid
generation for the complex meandering channel
commonly encountered in natural river. This
configuration problem may be treated more ef-
fectively by the finite element method.

The general finite element scheme that has
been applied to the common partial differential
equations is called Galerkin method. The
Galerkin method, when applied to most struc-
tures and heat conduction problems, leads to
symmetric stiffness matrices and by these ma-
trices the solution possesses the ‘best-approxi-
mation’ property (Brooks & Hughes, 1982).
However, in the advection problem the matrix
related to the advection term is non-symmetric
so that the ‘best-approximation’ property cannot
be retained. In practice, these shortcomings
appear as a wiggling solution in the advection
dominated condition which forces a rapid chan-
ge in the solution near the boundary.

The necessity for upwind finite element
scheme is due to this wiggling solution produced
when the advection is dominant. The basic idea of
the upwind method is to use the alternative
weighting function different to the shape function
and that is the only difference between this method
and the common Galerkin method. Such weight-
ing functions were first suggested by Zienkiewicz
et al. (1976) and actually used by Christie et al.
(1976).

Heinrich ef al. (1977) used the parabolic up-
wind weighting functions in steady-state one
dimensional problem and proposed the exten-
sion of this weighting to the two-dimensional
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conditions of crosswind were not considered. In
the multi-dimensional problem, there is unintended
numerical dispersion normal to the streamline di-
rection by this approach because of the false nu-
merical dispersion inherent in the upwinding. So it
is necessary to modify the upwind scheme to
match the multi-dimensional problem. The stream-
line upwind Petrov-Galerkin (SUPG) method
which introduce the additional diffusion only along
the streamline was developed by this motivation.
By this method, in two (or three) dimensions the
advection is only active in the direction of the re-
sultant element velocity. Han and Kim (2000) de-
veloped Petrov-Galerkin finite element method for
hydrodynamic and advection-diffusion analysis in
a river. And Kim and Han (2000) applied the Pet-
rov-Galerkin finite element model to the hydrody-
namics and water quality control problem of the
main Nakdong River from Sengju to Hyunpoong.
There is commercial software RMA4 which is
the contamination transport model of the SMS
(Surface Modeling System) and this used for the
model verification in this study. RMA4 uses the
fluid dynamic solutions of RMA2 to define the
velocity field of the given mesh. RMA2 was
developed by Norton, King, Orlob (1973) of
Water Resources Engineers, for the Walla Walla
District, Corps of Engineers. Subsequent en-
hancement was done by King and Norton, of
Resources Management Associates (RMA) and
Waterways Experiment Station Hydraulics
Laboratory, US Army Corps of Engineers
(USACE-WES). These model such as RMA2
and RMA4 and other water analysis models
constitute SMS which provide various post
process operation with calculated results. Kim et
al. (1998) used this RMA model to predict the
contaminant transport in the region of Han River
from downstream of Cham-Sil weir to upstream
of Shin-Kok weir. RMA models used Galerkin
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method in their formulation, so their will be the
possibility of improvement by current study of
advection transport formulation using finite
element method.

The main objective of this research is to for-
mulate the numerical algorithm by the finite
element method in order to analyze two-dimen-
sional mixing in the meandering channel. The
SUPG scheme was employed for the numerical
formulation. The experimental results of mixing
in the S-curved channel are compared with the
numerical results to test the applicability of the
proposed model.

2. MATHEMATICAL MODEL

2.1 Governing Equation

The correct procedure for depth averaging the
three-dimensional advection-diffusion equation
is to integrate each term over the depth taking
careful account of any depth variations of veloc-
ity and concentration. We begin this procedure
from a three-dimensional advection- diffusion
equation in Cartesian coordinates.
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where ¢ is the time-averaged concentration,
u,,u, and u, are the each directional time-
averaged velocities, and e ,e, and e, denote
the directional turbulent diffusion coefficients
for corresponding directions.

The depth averaged form of this equation can
be derived by integrating Eqn. (1) from the bed
to the water surface using Leibnitz's rule. Then
using the Reynolds’ decomposition and Taylor's
analysis of turbulent shear flow, the following
simplified depth averaged equation can be de-
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rived readily.
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where D, and D, are the longitudinal and

transverse dispersion coefficients which account
for the effects on the depth-averaged tracer con-
centration of depth variations in the longitudinal
velocity, and ¢, represents local depth of the
chammel. ¢ denotes the depth averaged value of

the tracer concentration, and U and ¥ directional
velocitiesin x and y directions, respectively.

1 o 1 1 ¢
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Invariably in river channels D _>>e and
D, >>e,- Using the continuity equation, Eqn. (2)

can be rewritten in advection form as follows.
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2.2 Numerical Modeling

When the channel depth and dispersion coef-
ficient are assumed to have constant values to
simplify the problem and the variable of channel
depth is eliminated using constant depth condi-
tion, Egn. (3) becomes
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When the approximated value of the concentra-

tion is expressed as C, residuals of Eqn. (4) is
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The weighted residual formulation in the finite
element method is

[R-wdar =0, i=12,.,N (6)

where W, is a weighting function for each
1 -th segment of finite elements.

Above integration with respect to the whole
domain produces the following matrix equation
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The SUPG method introduced by Brooks and
Hughes (1982) can be readily accomplished by
taking the individual weighting function for
eachnode I as

GhU@ON,/0)+V(@N,/%y)  (9)
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where optimal « is determined for each ele-

ment as

a,,, =coth|Pe| - IP_1| (10)
el

with local Peclet number Pe=,(7‘h /(2k) where

h is the maximum size of the element in the
direction of the velocity vector and & is the
diffusion coefficient. The form of Eqn. (9) is
such that the 'non-standard’ weighting has a zero
effect in the direction in which the velocity
component is zero. Thus the balancing diffusion
is only introduced in the direction of the resul-
tant velocity vector U (Zienkiewicz and Tay-
lor, 2000).

Integration of the derivatives with the local
coordinate system no longer involves simple
polynomial due to the term 1} /|J| appearing
in the inverse Jacobian matrix and become trou-
blesome. For this, the procedure known as
Gaussian quadrature was used which is the most
common numerical integration to solve this dif-
ficulty.

With respect to the term of ¢, we can ex-
press this as the combination of the values of
each time step.

C=6C" +(1-6)C" (11)

Setting @ as 1/2, the final matrix equation will

become a Crank-Nicolson approximation.

én+l + én

énﬂ _ én
M)+ U, 1+ 1K, )= 0
(12)
3. MODEL VERIFICATION

3.1 Line Source
To test the applicability of the finite element
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model, the transverse line source problem with
steady injection in the constant depth straight
rectangular channel was solved. This simple
case can be compared with the one-dimensional
analytical solution of continuous injection prob-
lem. The analytical solution for this one-dimen-
sional problem is given as

C:g erfc] __x—Ut +exp Ux erfc| __x+Ut
2 4Dt D, 4Dt
(13)

Both the standard Galerkin method and the Pet-
rov-Galerkin method used for this comparison.
Fig. (1) shows the comparing result at ¢ =36,

73, 108 sec. In this simulation, U =0.5 m/s,
Ax=25 m, Ay=2 m, At=3.6 sec, and
D, varies with Peclet number. As time goes by,

the numerical solution by standard Galerkin

@

(a) analytical
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method shows a wiggling one as the Peclet
number is increased, as shown in Fig. (1b). This
result shows that the standard Galerkin method
is not only inappropriate for steady-state prob-
lems, which is well-known, but also for the
transient problems.

3.2 Point Source

In the line source injection problem, the solu-
tions by Petrov-Galerkin method well-matched
with the analytical solutions. Then it is neces-
sary to test the model by the Petrov-Galerkin
method whether it is applicable to the two- di-
mensional motion of mixing process. The point
source problem is tested also in the same
straight channel and then compared with the
analytical solution. The analytical solution for
this point source problem accounting boundary
effects from the both sides of the channel is as

follows.

- ;
o 1o 2 3% 4 s e 70 8 S 10

(b) numerical

Fig. 2 Contour of the results of instantaneous injection from the point source
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channel, and w is the channel width. Fig. (2)

2T e 5 . ..
C= M exp| ~ (x-Ut) Zexp _(+nw) shows the result of this comparison in the contour
4m DD, 4Dt 4Dt

n=—o0

form. All the conditions of this simulation are
(14)  same as that of the line source problem except for

where M is the injected mass, 7 is the the

number of reflection at the both sides of the D, =01 m*/sec, D, =0.03 m"/sec. Each
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contour shows little difference in the shape of the
concentration distribution. For more precise
comparison, the concentration curve in the X -
direction coinciding with the centerline of the
channel and that of the y -direction at the cen-
tered cross section were plotted in the Fig. (3).
These graph shows that the numerical model
produces very similar result with the analytical
solution.

4. APPLICATION TO THE S-CURVED
CHANNEL

4.1 Experimental Data

The S-curved laboratory channel was con-
structed to conduct experiment as depicted in
Fig. (4). To realize the meander pattern of natu-
ral streams, the channel was designed with ref-
erence to previous studies such as Leopold and
Wolman (1960), Chang (1971), Krishnappan
and Lau (1977), Holly (1985) and Guymer
(1998). The considered hydraulic factors were
channel width, radius of curvature, central angle,
wavelength, and so on. This S-curved laboratory
channel was 15 m long, 1 m wide, and 0.6 m
deep. It consists of circular arcs connected by
straight sections. The radius of curvature is 2.4m,
the wavelength is 9.7m, and the central angle is

a) Case 101
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120. The cross-section of the channel is rectan-
gular,

An electromagnetic flowmeter was installed
in the water supply pipe to continuously meas-
ure the discharge passing through the chan-
nel. A point gauge was used to measure the
flow depth. A micro-ADYV, developed by Son-
Tek, was used to measure the three-dimensional
components of velocity and turbulence. The
micro-ADV operates on a pulse-to-pulse coher-
ent Doppler shift to provide a three-component
velocity at a rate of 50 Hz. Especially, in this
study, the side-looking ADV was used to meas-
ure whole region of cross-section. The measur-
ing sections are presented in the Fig. (4a) as S1,
D1, D2, - etc. and in each section there are 15
points for velocity measurements.

The concentration measurements were made
with the electrode conductivity meter, which
was developed by KENEK. Six electrode con-
ductivity meter probes were arranged at a tran-
section. The probe calibration for the response
to concentration was performed by a series of
standard salt solutions whose range were from 0
ppm to 10,000 ppm.

The several cases of experiments were con-
ducted for mixing in the meandering channel

Fig. 5 Experimental result of the velocity field of case 101
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Fig. 6 Relative concentration vs. time graph of experimental data and numerical

result for measuring section D3
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under various conditions of the flowrate and
water depth. At first the flow velocity field was
measured in 11 sections. The input data of the
velocity field for the numerical model were
linearly interpolated for each element of mean-
dering channel. The measured data of flow ve-
locity for typical case is depicted in Fig. (5). In
this figure, depth averaged velocities were ob-
tained by averaging velocity data at two vertical
points and the curved line in the channel denotes
the line of maximum velocity. The noticeable
phenomenon is that the maximum velocity oc-
curs taking the shortest course along the channel,
irrespective of flow conditions. In natural stream,
however, it has been known that the maximum
velocity occurred along the line which appeared
near the outer bank.

As the tracer of the mixing experiments,
250,000 ppm salt solution was used. The in-
jected point is the center of the section in which
the S-meandering is beginning. The injection
equipment has one hole of 1.5 cm diameter
where the injected substance comes out. The
measuring sections of the concentration are D1,
D3, Ul, U3. There are 6 measuring points for
each cross-section.

4.2 Analysis of results

The relative concentration vs. time graph of
experimental and numerical results at six meas-
uring points for Sections D3 and U3 are pre-
sented in Fig.’s (6)-(7). In these figures, y de-
notes the distance from the left side of the
channel, and w denotes the channel width. In
the numerical simulation, D, and D, were
selected so the best-fit value to the experimental
data by trial and error with initial values from
Eq. (15). The values of p_ and D, are fitted
as 0.01 m?/sec and 0.001 m?/sec, respec-
tively.

Water Engineering Research, Vol. 4, No.1, 2003
D, =593du’s D, =pdu (15)

* . .
where u is shear velocity and constant g

varies from 0.093 to 0.24.

In Section D3 as in the Fig. (6), the experi-
mental data show some fluctuations, so it can be
said that the vertical mixing is not stabilized
until this section. As one can see in this figure,
the advection of the experiment is well-depicted
by the numerical model. But the difference of
the peak values between these two results in
each measuring point is considerably large at
several lateral locations.

In Section U3, shown in the Fig. (7) the ex-
perimental results are stabilized almost com-
pletely and the experimental and numerical re-
sults are matched well. Both the values and its
positions of peak concentrations of the measured
data are well simulated by the numerical model.

In the Fig. (8), the peak concentration C,
time to peak t, the average of time f , and
the variance of time o? for Sections D1, D3,
Ul, U3 were compared. The peak concentration
isn’t estimated well by the numerical simulation
especially for the nearer sections from the injec-
tion point as shown in the Fig. (8a). However,
the time to peak concentration matched well as
shown in the Fig. (8b). In the Fig. (8c), the nu-
merical simulation slightly underestimate the
experimental result with respect to the average
value of time. However, as shown in Fig. (8d),
the variances of the numerical results are sig-
nificantly smaller than those of experimental
results. Variances of experimental data increases
rapidly as the injected substance arrived at the
section Ul and U3 while that of numerical re-
sults increases a little bit relatively.

For further application, the continuous point
source injection in the experimental S-curved
channel was simulated and compared with the
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Fig. 8 Comparison about the several characteristics of the concentration distribution

with respect to time

result by RMA4 (Environmental Modeling Re-
search Lab., 2000). The continuous injection
condition is difficult to be conducted at the ex-
periment because it needs the large tank for the
tracer. The simulation results by the numerical
model and RMA4 are depicted in Fig. (9). These
simulations have some different condition. The
numerical model uses SUPG method for the
formulation but the RMA4 uses standard
Galerkin method. In the Fig. (9), the solution by
the numerical model in this study has more dis-
persion effect produced by artificial diffusion

which smooth the oscillating solution. Because
of this smoothing effect, the mesh size of the
numerical model doesn’t have to be so fine as
RMAA4 requires.

Dispersion coefficients D, and D, are fixed
in both RMA4 and the model of this study.
However, in meandering channel such as the
experimental channel used in this study, these
coefficients are variable depending on the flow
direction (Piasecki and Katopodes, 1999). More
experimental works and the modification of

governing equation are needed to account for
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(a)
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N

= 20 sec

(b)

Fig. 9 The contour of the simulation result with the continuous injection;
(a) Numerical result (b) Result by RMA4

the variability of dispersion coefficients.

5. CONCLUSION

Two-dimensional dispersion was modeled
using the finite element method. Numerical
simulations were tested against the analytical
solutions for straight channels. Experiments
were conducted to verify the performance of the

numerical model in the curved channel.

In the transverse line source example in the
straight channel, the numerical solution by
standard Galerkin method makes a wiggling
solution as the Peclet number become large.
This result shows that the standard Galerkin
method is not only inappropriate for steady-state
problems, which is well-known, but also for the
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transient problems. Thus, it is concluded that
also in the transient problem there is difficulty in
simulation by standard Galerkin method.

Although the upwind Petrov-Galerkin method
didn’t show the critical dependence of the
Galerkin method on the Peclet number, it still
gave more accurate solutions when the Peclet
number is small. This can be interpreted as the
effect of the artificial diffusion by the upwind
formulation is large for the comparatively small
diffusion. So in this two-dimensional transient
problem, the optimal damping factor adapted
from the one-dimensional case doesn't give such
an accuracy as the one-dimensional steady-state
problem.

Now that all these test applications above
show the applicability of the numerical model
constructed in this study, the real experimental
concentration data could be compared with the
simulation results by the numerical model. In
this comparison, the experimental data of the
initial mixing in the near-field is so unstable that
the numerical result could not be fitted well. But
once the experimental mixing become stable in
the mid-field zone, the numerical results and the
experimental results matched well each other.
Therefore, it can be concluded that this numeri-
cal model can be applied to the real two-dimen-
sional mixing process.

The SUPG method was used to the formula-
tion which is different from the commercial
simulation software RMA4 that used standard
Galerkin method. With the proposed numerical
model, the oscillation effect in the solution
which is occurring when we used standard
Galerkin method was smoothed, so the mesh
size doesn’t have to be so small as the RMA4
requires. That gives the reduction of the time for
simulation.
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