• Title/Summary/Keyword: epitaxial films

Search Result 353, Processing Time 0.032 seconds

Epitaxial Growth of $CeO_2\;and\;Y_2O_3$ Buffer-Layer Films on Textured Ni metal substrate using RF Magnetron Sputtering (이축정렬된 Ni 금속모재에 RF 마그네트론 스퍼터링에 의해 증착된 $CeO_2$$Y_2O_3$ 완충층 박막 특성)

  • Oh, Y.J.;Ra, J.S.;Lee, E.G.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.120-129
    • /
    • 2006
  • We comparatively studied the epitaxial growth conditions of $CeO_2$ and $Y_2O_3$ thin buffers on textured Ni tapes using rf magnetron sputtering and investigated the feasibility of getting a single mixture layer or sequential layers of $CeO_2$ and $Y_2O_3$ for more simplified buffer architecture. All the buffer layers were first deposited using the reducing gas of $Ar/4%H_2$ and subsequently the reactive gas mixture of Ar and $O_2$, The crystalline quality and biaxial alignment of the films were investigated using X-ray diffraction techniques (${\Theta}-2{\Theta},\;{\phi}\;and\;{\omega}\;scans$, pole figures). The $CeO_2$ single layer exhibited well developed (200) epitaxial growth at the condition of $10%\;O_2$ below an $450^{\circ}C$, but the epitaxial property was decreased with increasing the layer thickness. $Y_2O_3$ seldom showed optimum condition for (400) epitaxial growth. The sequential architecture of $CeO_2/Y_2O_3/CeO_2$ having good epitaxial property was achieved by sputtering at a temperature of $700^{\circ}C$ on the initial $CeO_2$ bottom layer sputtered at $400^{\circ}C$. Cracking of the sputtered buffer layers was seldom observed except the double layer structure of $CeO_2/Y_2O_3$.

  • PDF

Epitaxial growth of oxide films using miscut substrates (Miscut된 기판을 이용할 산화물 박막의 에피 성장)

  • Bu Sang Don
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.145-149
    • /
    • 2004
  • We have grown piezoelectric oxide films by RF magnetron sputtering using miscut substrates. Films were Brown on(001) $SrTiO_3$ substrates with miscut angles from 0 to 8 degrees toward the (100) direction. Films on high miscut substrates (>$4^{\circ}$) showed almost the pure perovskite phase in x-ray diffraction and were nearly stoichiometric. In contrast, films on exact (001) $SrTiO_3$ contained a high volume fraction of pyrochlore phases. A film on an $8^{\circ}$ miscut substrate exhibits a polarization hysteresis loop with a remnent polarization of 20$\mu$C/$\textrm{cm}^2$ at room temperature.

ZnO film growth on sapphire substrate by RF magnetron sputtering (RF 스퍼터링 법에 의한 사파이어 기판상의 ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.215-219
    • /
    • 2004
  • ZnO epitaxial films have been grown on a (0001)sapphire substrate by RF magnetron sputtering. The single crystalline ZnO films were grown at the condition of growth rate of about 0.1~0.2 $\mu\textrm{m}$/hr and the substrate temperature of $600^{\circ}C$. The film thickness was about 400~500 nm. The thin film quality and micro-structure have been evaluated by XRD and TEM observation.

MBE growth of topological insulator $Bi_2Se_3$ films on Si(111) substrate

  • Kim, Yong-Seung;Bansa, Namrata;Edrey, Eliav;Brahlek, Mathew;Horibe, Yoichi;Iida, Keiko;Tanimura, Makoto;Li, Guo-Hong;Feng, Tian;Lee, Hang-Dong;Gustafsson, Torgny;Andrei, Eva;Cheong, Sang-Wook;Oh, Seong-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.59-59
    • /
    • 2011
  • We will report atomically sharp epitaxial growth of $Bi_2Se_3$ three-dimensional topological insulator films on Si(111) substrate with molecular beam epitaxy (MBE). It was achieved by employing two step growth temperatures to prevent any formation of second phase, like as $SiSe_2$ clusters, between $Bi_2Se_3$ and Si substrate at the early stage of growth. The growth rate was determined completely by Bi flux and the Bi:Se flux ratio was kept ~1:15. The second-phase-free atomically sharp interface was verified by RHEED, TEM and XRD. Based on the RHEED analysis, the lattice constant of $Bi_2Se_3$ relaxed to its bulk value during the first quintuple layer implying the absence of strain from the substrate. Single-crystalline XRD peaks of $Bi_2Se_3$ were observed in films as thin as 4 QL. TEM shows full epitaxial structure of $Bi_2Se_3$ film down to the first quintuple layer without any second phases. This growth method was used to grow high quality epitaxial $Bi_2Se_3$ films from 3 QL to 3600 QL. The magneto-transport properties of these thin films show a robust 2D surface state which is thickness independent.

  • PDF

Properties Optimization for Perovskite Oxide Thin Films by Formation of Desired Microstructure

  • Liu, Xingzhao;Tao, Bowan;Wu, Chuangui;Zhang, Wanli;Li, Yanrong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.715-723
    • /
    • 2006
  • Perovskite oxide materials are very important for the electronics industry, because they exhibit promising properties. With an interest in the obvious applications, significant effort has been invested in the growth of highly crystalline epitaxial perovskite oxide thin films in our laboratory. And the desired structure of films was formed to achieve excellent properties. $Y_1Ba_2Cu_3O_{7-x}$ (YBCO) superconducting thin films were simultaneously deposited on both sides of 3 inch wafer by inverted cylindrical sputtering. Values of microwave surface resistance R$_2$ (75 K, 145 GHz, 0 T) smaller than 100 m$\Omega$ were reached over the whole area of YBCO thin films by pre-seeded a self-template layer. For implementation of voltage tunable high-quality varactor, A tri-layer structured SrTiO$_3$ (STO) thin films with different tetragonal distortion degree was prepared in order to simultaneously achieve a large relative capacitance change and a small dielectric loss. Highly a-axis textured $Ba_{0.65}Sr_{0.35}TiO_3$ (BST65/35) thin films was grown on Pt/Ti/SiO$_2$/Si substrate for monolithic bolometers by introducing $Ba_{0.65}Sr_{0.35}RuO_3$ (BSR65/35) thin films as buffer layer. With the buffer layer, the leakage current density of BST65/35 thin films were greatly reduced, and the pyroelectric coefficient of $7.6\times10_{-7}$ C $cm^{-2}$ $K^{-1}$ was achieved at 6 V/$\mu$m bias and room temperature.

Structural and Electronic Properties of Cu-doped ZnO Thin Films by RF Sputtering Method

  • Lee, Ik-Jae;Seong, Nak-Eon;Yu, Cheong-Jong;Lee, Han-Gu;Sin, Hyeon-Jun;Yun, Yeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.103-103
    • /
    • 2011
  • The epitaxial Cu-doped ZnO and pure ZnO thin films were grown on Al2O3 (0001) substrates by RF sputtering method. The structures and crystallographic orientations were investigated using X-ray diffraction (XRD) and X-ray absorption spectroscopy. From the XRD pattern, it is observed that peak positions shift towards higher $2{\theta}$ value with Cu doping. The ${\omega}$-scan measurements at the (0002) diffraction peak for these samples reveal that the full-widths at half-maxima (FWHMs) are about $0.017-0.019^{\circ}$, which indicate a good c-axis orientation of the Zn1-xCuxO films. From phi-scan, all of the Zn1-xCuxO films were epitaxially grown. EXAFS measurements also demonstrated that Cu incorporated into a Zn-atom position substitutionally. All the results confirmed that copper ion were well incorporated into the ZnO lattices by substituting Zn sites without changing the wurtzite structure and no secondary phase existed in Cu-doped ZnO thin films.

  • PDF

Superconductivity and Surface Morphology of YBCO/CeO$_2$ Thin Films on Sapphire Substrate by Pulsed Laser Deposition (사파이어 기판 위에 펄스-증착법으로 성장한 YBCO/CeO2박막의 초전도성과 표면 모폴러지)

  • Kang, Kwang-Yong;J. D. Suh
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.88-91
    • /
    • 2003
  • The crystal structure and properties of YBa$_2$Cu$_3$$O_{7-x}$(YBCO) and CeO$_2$ thin films deposited on r-plane (1(equation omitted)02) sapphire substrate by pulsed- laser deposition(PLD) have been investigated. C-axis oriented epitaxial YBCO thin films with critical temperature (Tc) of 88 K were routinely grown on (200) oriented CeO$_2$ buffer layers with thickness in the range between 20 to 80 nm. When the thickness of the (200)oriented CeO$_2$ buffer layer increases over than 80 nm, the superconducting properties of YBCO thin films on that were deteriorated. The decrease in Tc of YBCO thin films was explained by the microcrack formation in CeO$_2$ buffer layer. These results indicate that the thickness of the (200) oriented CeO$_2$ buffer layer is critical to the epitaxial YBCO thin nim growth on r-plane (1(equation omitted)02) sapphire substrate.e.

  • PDF

Crystal Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100)기판상에 성장된 3C-SiC의 결정 특성)

  • Chung, Yun-Sik;Ryu, Ji-Goo;Seon, Joo-Heon;Chung, Soo-Yong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.30-34
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) wafers up to a thickness of 4.3 ${\mu}m$ by APCVD method using HMDS(hexamethyldisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was 4.3 ${\mu}m$/hr. The 3C-SiC epitaxial films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near 796 $cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$).

  • PDF

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides (중간층 Ti 두께에 따른 CoSi2의 에피텍시 성장)

  • Choeng, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2003
  • Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.