Epitaxial growth of oxide films using miscut substrates

Miscut된 기판을 이용할 산화물 박막의 에피 성장

  • Published : 2004.12.01

Abstract

We have grown piezoelectric oxide films by RF magnetron sputtering using miscut substrates. Films were Brown on(001) $SrTiO_3$ substrates with miscut angles from 0 to 8 degrees toward the (100) direction. Films on high miscut substrates (>$4^{\circ}$) showed almost the pure perovskite phase in x-ray diffraction and were nearly stoichiometric. In contrast, films on exact (001) $SrTiO_3$ contained a high volume fraction of pyrochlore phases. A film on an $8^{\circ}$ miscut substrate exhibits a polarization hysteresis loop with a remnent polarization of 20$\mu$C/$\textrm{cm}^2$ at room temperature.

RF magnetron sputtering 방법으로 miscut된 기판을 이용해서 양질의 압전 산화물 에피 박막을 제작하였다. 박막은 (001) $SrTiO_3$ 기판 위에 증착되었으며, (100) 방향으로 $0^{\circ}$-$8^{\circ}$의 miscut 각도를 갖는 기판들을 사용했다. $4^{\circ}$이상의 큰 miscut 각도를 갖는 기판 위에 성장된 박막의 경우, x-ray diffraction (XRD) 패턴은 perovskite 상의 순수한 PMN-PT 피크만을 보여 주었으며, wavelength dispersive x-ray fluorescence spectroscopy를 이용해서 분석한 조성비는 stoichiometric한 조성비에 가까운 값을 보여주었다. 반면에, miscut 각도가 없는 기판 위에 증착된 박막의 경우, 2차상인 pyrochlore 상을 포함하는 XRD 패턴을 보여주었다. $8^{\circ}$ 기판 위에 성장된 박막의 경우 실온에서 20$\mu$C/$\textrm{cm}^2$라는 높은 잔류분극 값을 보여주었다

Keywords

References

  1. S.E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997) https://doi.org/10.1063/1.365983
  2. D. Lavric, R. A. Rao, Q. Gan, J. J. Krajewski, and C. B. Earn, Integr. Ferroelectr. 21, 499 (1998) https://doi.org/10.1080/10584589808202090
  3. J.P. Maria, W. Hackenberger, and S. TrolierMcKinstry, J. Appl. Phys. 84, 5147 (1998) https://doi.org/10.1063/1.368809
  4. S. Stemmer, G. R. Bai, N. D. Browning, and S.K. Streiffer, J. Appl. Phys. 87, 3526 (2000); G.R. Bai, S. K. Streiffer, P. K. Baumann, S.Stemmer, O. Auciello, K. Ghosh, A. Munkholm, C. Thompson, R. A. Rao, and C. B. Earn, Appl. Phys. Lett. 76, 3106 (2000) https://doi.org/10.1063/1.126538
  5. V. Nagarajan, S. P. Alpay, C. S. Ganpule, B. K. Nagaraj, S. Aggarwal, E. D. Williams, A. L. Roytburd, and R. Ramesh, Appl. Phys. Lett. 77, 438 (2000) https://doi.org/10.1063/1.127002
  6. S. D. Bu, M. K. Lee, C. B. Earn, W. Tian, X. Q. Pan, S. K. Streiffer, and J. J. Krajewski, Appl. Phys. Lett. 79, 3482 (2001) https://doi.org/10.1063/1.1414293
  7. C. B. Eom, X. Q. Pan, S. K. Streiffer, R. Ramesh, and S.D. Bu (submitted)
  8. J. Kwo, R. M. Fleming, H. L. Kao, D. J. Werder, and C. H. Chen, Appl. Phys. Lett. 60, 1905 (1992) https://doi.org/10.1063/1.107149
  9. J. N. Eckstein, I. Bozovic, D. G. Schlom, and J. S. Harris, Jr., Appl. Phys. Lett. 57, 1049 (1990). https://doi.org/10.1063/1.104278
  10. S. K. Streiffer, B. M. Lairson, and J. C. Bravrnan, Appl. Phys. Lett. 57, 2501 (1990) https://doi.org/10.1063/1.103840
  11. C. B. Earn, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. Van Dover, J. H. Marshall, J. W. P. Hsu, J. J. Krajewski, and W. F. Peck, Jr., Science 258, 1766 (1992) https://doi.org/10.1126/science.258.5089.1766
  12. Q. Gan, R. A. Rao, and C. B. Earn, Appl. Phys. Lett. 70, 1962 (1997) https://doi.org/10.1063/1.118792
  13. C. B. Earn, R. B. Van Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, Appl. Phys. Lett. 63, 2570 (1993) https://doi.org/10.1063/1.110436
  14. R. A. Rao, Q. Gan, C. B. Earn, Y. Suzuki, A. A. McDaniel, and J. W. P. Hsu, Appl. Phys. Lett. 69, 3911 (1996) https://doi.org/10.1063/1.117567
  15. S. L. Swartz and T. R. Shrout, Mater. Res. Bull. 17, 1245 (1982) https://doi.org/10.1016/0025-5408(82)90159-3
  16. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, Mater. Lett. 8, 253 (1989) https://doi.org/10.1016/0167-577X(89)90115-8
  17. Q. Gan and C. B. Earn (submitted)