• Title/Summary/Keyword: environment condition

Search Result 6,759, Processing Time 0.036 seconds

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings (외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향)

  • Park, Song-Yi;Kim, Heung-Tae;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.329-336
    • /
    • 2014
  • As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.

Comparison of Climatic Conditions of Sweet Pepper's Greenhouse between Korea and the Netherlands (한국과 네덜란드의 파프리카 재배온실의 시설 내.외부 기상환경 비교)

  • Jeong, Won-Ju;Myoung, Dong-Ju;Lee, Jeong-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2009
  • This research aims at comparison of climatic conditions of sweet pepper's greenhouse between Korea (KOR) and the Netherlands (NL) to find out the reason of much lower yield in KOR than NL focus-ing on greenhouse climatic conditions. Hence, greenhouse climate data were obtained from each one commercial glasshouse in both countries. The crops (cv. 'Derby') were grown on rockwool slab with two stems per plant with 3.75plants/$m^2$ in KOR and three stems per plant with 2.5plants/$m^2$ or four stems per plant with 1.875plants/$m^2$ in NL. Even though plant density was differed but stem density was on the same to 7.5stems/$m^2$. There was no significantly difference on weekly growth of sweet pepper plant both countries, whereas harvested nodes to whole nodes of NL's plant was more than two times higher compared to KOR. The averaged daily global radiation during the whole growing periods was 14.5MJ/$m^2$/day in KOR and l2.1MJ/$m^2$/day in NL. Averaged 24h temperature was similar to both glasshouse as $21.6^{\circ}C$ in KOR and $21.2^{\circ}C$ in NL during the whole growing periods, however the variance was higher in KOR than NL. Humidity deficit (HD) was observed higher in KOR during the whole growing periods. Averaged day $CO_2$ concentration was measured contrary pattern in both countries because of heating to greenhouse on NL winter season. Averaged 24h temperature and day $CO_2$ concentration to daily global radiation was regular pattern in NL, whereas there are large scatter in KOR. Consequently, more irregular greenhouse climate condition in KOR could be induced irregularly crop growth.

Selection of Non-Perforated Breathable Film to Enhance Storability of Cherry Tomato for Modified Atmosphere Storage at Different Temperatures (방울토마토의 MA 저장성 향상을 위한 비천공 breathable 필름 구명)

  • Islam, Mohammad Zahirul;Mele, Mahmuda Akter;Lee, Han Jong;Lee, Kyoung Soo;Hong, Sung Mi;Jeong, Min Jae;Kim, Il-Seop;Hong, Soon-Kwan;Choi, In-Lee;Baek, Jun Pill;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • This study was conducted to find out the appropriate packaging materials to extend the storability and maintain the quality of cherry tomato for modified atmosphere (MA) storage. Tomatoes were grown by hydroponic at a plastic house in Gangwon Province. Light red maturity stage tomatoes were harvested and packed with MA condition (10,000; 20,000; 40,000; 60,000; 80,000; and $100,000cc/m^2.day.atm$ $O_2$ permeability film) and perforated film to store at $5^{\circ}C$, $11^{\circ}C$ and $24^{\circ}C$. The fresh weight loss was less than 0.6% in all non-perforated breathable films at $^5{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$, but perforated film had less than 2.93% at $5^{\circ}C$, 13.29% at $11^{\circ}C$ and 27.24% at $24^{\circ}C$. The 20,000cc at $5^{\circ}C$ and $11^{\circ}C$, and the 40,000cc film at $24^{\circ}C$ balanced optimum carbon dioxide and oxygen concentration in the package to maintain quality. The 10,000cc film was appeared the significantly highest ethylene concentration at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$, this film had the lowest $O_2$ permeability. Visual quality, firmness, and soluble solids were maintained in 20,000cc films both at $5^{\circ}C$ and $11^{\circ}C$, the 40,000cc film at $24^{\circ}C$. There was no any trend in titratable acidity and vitamin C content of treated packed film types and temperatures at cherry tomatoes packages. Therefore, the appropriate MA condition for $5^{\circ}C$ and $11^{\circ}C$ is $20,000cc/m^2.day.atm$ $O_2$ permeability film; for $24^{\circ}C$ it is $40,000cc/m^2.day.atm$ $O_2$ permeability film because those films extended the storability through the firmness, soluble solids as well as visual quality.

The Effect of Creeping Bentgrass Growth on Greenspeed (그린잔디의 생육이 그린스피드에 미치는 영향)

  • Kwon, Il-Woo;Lee, Dong-Hee;Choi, Byuong-Man;Tae, Hyun-Sook;Shin, Dong-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.223-228
    • /
    • 2011
  • This research was performed to investigate change of green speed according to growth of grass, for this, the method of effective green management for improvement of green speed was searched by investigating green density, soil moisture, surface hardness, and mowing height every day for 6 months. As the result of the study, reliability between, green density, soil moisture, surface hardness, mowing height and green speed were measured to be respectively 0.4742, 0.5690, 0.4632, 0.2806, i.e. soil moisture is considered as the factor which affects green speed the most. Therefore, it will be an advantageous environment to maintain soil moisture a little bit low to improve green speed within the range that does not disrupt the growth of green. In case of green density, it is considered to be effective to get a fast green speed when obtaining enough density during May~June, the most vigorous growth period and at the same time green up period. Surface hardness was confirmed that management work as rolling is a considerably effective method to increase hardness. However, rolling gives high stress to the green, combining another management work as regular hilling could be a good alternative. Reliability of green preview and green speed was 0.2806, lower than soil moisture or surface hardness. Through the results, it was confirmed that management of mowing height to be low less than 3.00 mm is helpful to improve green speed, timely, and it is advantageous to manage green speed when adjusting mowing height during the vigorous growth period of bent grass. However, considering the range of mowing height was not various, being 2.9~3.4 mm, henceforth research on investigation of green speed at more various mowing heights would be necessary. Consequently, except mowing height, other three factors, i.e. green density, soil moisture and surface hardness were investigated to have considerable level of reliability on green speed, and it is considered that each factor affects green speed respectively according to green condition and time. Accordingly, in order for the manager to maintain high speed all year round, intensive care for each factor per time unit considering green growth condition is considered to be necessary.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.

Effects of Growth and Cellular Tissue under Abnormal Climate Condition in Chinese Cabbage (이상기상 조건이 배추의 생육 및 세포조직에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Choi, Jun Myung;Lee, Hee Ju;Park, Suhyoung;Do, Kyung Ran
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.87-90
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This experiment was carried out to figure out the change of cellular tissue of chinese cabbage under the condition of low temperature to provide the information regarding the coming climatic change, on the performance of 'Chunkwang' chinese cabbage during the spring growing season. In our study, plant height, number of leaf, chlorophyll and leaf area was lower at the open field cultivation than heating house treatment after transplanting 50 days. Especially in fresh weight, compared with heating treatment, open field and not heated treatment were notably low with the 1/3 level. Of damage symptoms due to low temperature cabbage leaves about 10 sheets when $-3.0^{\circ}C$ conditions in chinese cabbage was a little bit of water soaking symptoms on the leaves. $-7.4^{\circ}C$ under increasingly severe water soaking symptoms of leaf turns yellow was dry. Microscopy results showed symptoms of $-3.0^{\circ}C$ when the mesophyll cell of palisade tissue and spongy tissue collapse, $-7.4^{\circ}C$ palisade tissue and spongy tissue was completely collapsed. The result of this study suggests that the growers should be cautioned not to transplant their chinese cabbage seedlings too early into the field, and should be re-transplanting or transplanting other plants if chinese cabbage are exposed to suboptimal temperature conditions ($-3.0^{\circ}C$ or $-7.4^{\circ}C$).

Vine Growth and Fruit Characteristics of 'Jinok' and 'Campbell Early' Grape as Influenced by Cropping System (재배작형에 따른 포도 '진옥'과 '캠벨얼리'의 수체생육 및 과실 특성 분석)

  • Cheon, Mi Geon;Kim, Yeong Bong;Lee, Sun Yeong;Hong, Gwang Pyo;Jung, Sung Min;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • This study was conducted for the domestic new cultivar to expand cultivation area and sustainable production. The new domestic cultivar, 'Jinok' and control cultivar, 'Campbell Early', had been investigated on vine growth and fruit quality by different cultivating conditions as open field, rain shelter and unheated plastic house. The growth period of 'Jinok' was faster than 'Campbell Early'. The harvesting date of 'Jinok' was on 13th of Aug. faster than 'Campbell Early' which was on 17th of Aug., and it was on 25th and 29th of Aug. for 'Jinok' and 'Campbell Early' on field cultivation, respectively. The growing length and width of new shoots were similar among the cropping systems. In the result of fruit characteristic evaluation, the soluble solids content of the 'Jinok' and 'Campbell Early' cultivating on the unheated plastic house were $15.4^{\circ}Brix$ and $15.9^{\circ}Brix$, respectively. In the open field condition, those were $15.9^{\circ}Brix$ and $15.8^{\circ}Brix$, respectively. The titratable acidity and chromaticity were similar among the treatments. In the appearance of past and disease, Phomopsis blight was occurred on mid of June and in the end of cultivation period on about early Aug., the damage by Phomopsis blight was the lowest about 14% in the unheated plastic house cultivation on the 'Jinok' cultivar and it was 39% in the open field condition. However, in the open filed cultivation for 'Campbell Early', Phomopsis blight was highly occurred about 49%. During this period, or the end of cultivation, it is necessary for the intensive control.

Effect of Temperature on the Quality and Storability of Cherry Tomato during Commercial Handling Condition (유통중 온도관리가 방울토마토의 품질과 저장성에 미치는 영향)

  • Islam, Mohammad Zahirul;Kim, Young-Sik;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.88-94
    • /
    • 2012
  • This study was carried out in order to investigate the effect of temperature of treatment and storage on the longevity of 'Unicorn' tomatoes of light red maturity stage during commercial handling conditions encountered while exporting over long distances. Tomato stored at $5^{\circ}C$ and $11^{\circ}C$ temperature with 85% relative humidity by pre-treating handling temperature that was using from field to before shipment as a winter temperature $5^{\circ}C$, spring temperature $11^{\circ}C$ and summer temperature $25^{\circ}C$ for 3 days. On the final storage day, $25^{\circ}C/11^{\circ}C$ (treated/stored) tomatoes showed the highest respiration and ethylene production rate; whereas the lowest respiration and ethylene production rate was found for $5^{\circ}C/5^{\circ}C$ treated and stored tomatoes. Tomatoes treated and stored at $5^{\circ}C/5^{\circ}C$ showed higher marketability, without evidence of fungal rot, decay or spots for 23 days. The fresh weight loss under all treatment conditions increased gradually during $5^{\circ}C$ and $11^{\circ}C$ storage temperatures. The higher firmness and soluble solids were determined from $5^{\circ}C/5^{\circ}C$ and $5^{\circ}C/11^{\circ}C$ treated and stored tomatoes repectively, than from others tomatoes on the final day of storage. In addition, $5^{\circ}C/5^{\circ}C$ tomatoes showed higher vitamin C contents than tomatoes stored at other temperatures, on the final day of storage. As the ripening and storage period progressed, the titratable acidity increased, but declined (P < 0.05) thereafter, due to over ripe tomatoes under all treatment conditions. These results show that $5^{\circ}C/5^{\circ}C$ treated and stored light red maturity stages of 'Unicorn' tomatoes are optimum to export because they show the highest storability and marketability. Moreover, the marketability of light red maturity stage of 'Unicorn' tomato maintained for 2 weeks in $25^{\circ}C/11^{\circ}C$ treated and stored temperature that might be the export temperature from Korea to Japan in summer season. This research result could be useful in helping tomato growers and exporters to get optimum market value by satisfying the buyer and consumer with a fresher product.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

The Responses of Particulate Phosphorus Exposed to the Fresh Water in Marine Sediment (담수화로 인한 퇴적물 내 입자성 인의 거동에 관한 실험적 연구)

  • Ji, Kwang-Hee;Jeong, Yong-Hoon;Kim, Hyun-Soo;Yang, Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.84-90
    • /
    • 2009
  • We incubated marine columnar sediments at $25^{\circ}C$ for 230 days to simulate the responses of phosphorus in the sediment which was exposed to freshwater. The incubation was composed of three different treatments (FW: freshwater, FWA: freshwater under anoxic condition, and SW: seawater as a Control). Six particulate fractions of phosphorus in sediment were obtained through sequential extraction and, for comparison, phosphate concentrations in porewater and superlying water were also determined. After the incubation, evidently higher concentrations of phosphate were found in FW and FWA compared to SW. Mass extinction of living organisms in marine sediment from freshwater shock and consequent decay of their corps probably contributed such high phosphate spike in the overlying water. Higher concentrations of BD-P(lron-bound P) were found in FW compared to SW. After exposure to the freshwater, we could determine that penetration depth of dissolved oxygen in marine sediment will be deeper. A result of increases of ferrous compounds in freshwater where contained less sulfide has been obtained. Because of these phenomena, BD-P was increased in FW. On the contrary, BD-P was decreased in FWA since poor dissolved oxygen concentration. In FWA, total amount of Leachable P(SUM of LOP) has been remarkably increased through the experiment, which strongly suggested the easy conversion of the leachable P into reactive P. This experiment has shown that most of diverse P species in marine sediment were leachable under freshwater and low oxygen condition. Therefore reclamation of natural tidalfalt and consequent freshwater introduction seems to trigger the conversion of diverse P-species to leachable P in the marine sediments, which will exert high benthic load of phosphate to the overlying water.

  • PDF