• Title/Summary/Keyword: entire solutions

Search Result 213, Processing Time 0.023 seconds

MULTIPLE EXISTENCE OF SOLUTIONS FOR A NONHOMOGENEOUS ELLPITIC PROBLEMS ON RN

  • Hirano, Norimichi;Kim, Wan Se
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.703-713
    • /
    • 2018
  • Let $N{\geq}3$, $2^*=2N/(N-2)$ and $p{\in}(2,2^*)$. Our purpose in this paper is to consider multiple existence of solutions of problem $$-{\Delta}u-{\frac{\mu}{{\mid}x{\mid}^2}}+{\alpha}u={\mid}u{\mid}^{p-2}u+{\lambda}f\;u{\in}H^1({\mathbb{R}}^n)$$, where a, ${\lambda}$ > 0, ${\mu}{\in}(0,(N-2)^2/4)f{\in}H^{-1}({\mathbb{R}}^N)$, $f{\geq}0$ and $f{\neq}0$.

Analysis of Flow Field in Cavity Using Finite Analytic Method (F.A.M.을 이용한 공동 내부의 유동해석)

  • 박명규;정정환;김동진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.46-53
    • /
    • 1991
  • In the present study, Navier-Stokes equation is numerically solved by use of a Finite analytic method to obtain the 2-dimensional flow field in the square cavity. The basic idea of F.A.M. is the incorporation of local analytic solutions in the numerical solution of linear or non-linear partial differential equations. In the F.A.M., the total problem is subdivided into a number of all elements. The local analytic solution is obtained for the small element in which the governing equation, if non-linear, to be linearized. The local analytic solutions are then expressed in algebraic form and are overlapped to cover the entire region of the problem. The assembly of these local analytic solutions, which still preserve the overall nonlinearity of the governing equations, results in a system of linear algebraic equations. The system of algebraic equations is then solved to provide the numerical solutions of the total problem. The computed flow field shows the same characteristics to physical concept of flow phenomena.

  • PDF

A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG

  • Majumder, Sujoy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.411-421
    • /
    • 2016
  • In this paper, we investigate the problem of transcendental entire functions that share two values with one of their derivative. Let f be a transcendental entire function, n and k be two positive integers. If $f^n-Q_1$ and $(f^n)^{(k)}-Q_2$ share 0 CM, and $n{\geq}k+1$, then $(f^n)^{(k)}{\equiv}{\frac{Q_2}{Q_1}}f^n$. Furthermore, if $Q_1=Q_2$, then $f=ce^{\frac{\lambda}{n}z}$, where $Q_1$, $Q_2$ are polynomials with $Q_1Q_2{\not\equiv}0$, and c, ${\lambda}$ are non-zero constants such that ${\lambda}^k=1$. This result shows that the Conjecture given by W. $L{\ddot{u}}$, Q. Li and C. Yang [On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.] is true. Also we exhibit some examples to show that the conditions of our result are the best possible.

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

On the Growth of Transcendental Meromorphic Solutions of Certain algebraic Difference Equations

  • Xinjun Yao;Yong Liu;Chaofeng Gao
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.185-196
    • /
    • 2024
  • In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.

LARGE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATION OF MIXED TYPE

  • Zhang, Yuan;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.721-736
    • /
    • 2014
  • We consider the equation ${\Delta}_mu=p(x)u^{\alpha}+q(x)u^{\beta}$ on $R^N(N{\geq}2)$, where p, q are nonnegative continuous functions and 0 < ${\alpha}{\leq}{\beta}$. Under several hypotheses on p(x) and q(x), we obtain existence and nonexistence of blow-up solutions both for the superlinear and sublinear cases. Existence and nonexistence of entire bounded solutions are established as well.

SOME RESULTS ON MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1095-1113
    • /
    • 2020
  • In this paper, we investigate the transcendental meromorphic solutions for the nonlinear differential equations $f^nf^{(k)}+Q_{d_*}(z,f)=R(z)e^{{\alpha}(z)}$ and fnf(k) + Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z), where $Q_{d_*}(z,f)$ and Qd(z, f) are differential polynomials in f with small functions as coefficients, of degree d* (≤ n - 1) and d (≤ n - 2) respectively, R, p1, p2 are non-vanishing small functions of f, and α, α1, α2 are nonconstant entire functions. In particular, we give out the conditions for ensuring the existence of these kinds of meromorphic solutions and their possible forms of the above equations.

Multi-objective optimization using a two-leveled symbiotic evolutionary algorithm (2 계층 공생 진화알고리듬을 이용한 다목적 최적화)

  • Sin, Gyeong-Seok;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • This paper deals with multi-objective optimization problem of finding a set of well-distributed solutions close to the true Pareto optimal solutions. In this paper, we present a two-leveled symbiotic evolutionary algorithm to efficiently solve the problem. Most of the existing multi-objective evolutionary algorithms (MOEAs) operate one population that consists of individuals representing the complete solution to the problem. The proposed algorithm maintains several populations, each of which represents a partial solution to the entire problem, and has a structure with two levels. The parallel search and the structure are intended to improve the capability of searching diverse and good solutions. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The experimental results confirm the effectiveness of the proposed algorithm.

  • PDF

THREE RESULTS ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.795-814
    • /
    • 2021
  • In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: fn + P(f) = R(z)eα(z) and fn + P*(f) = p1(z)eα1(z) + p2(z)eα2(z) in the complex plane, where P(f) and P*(f) are differential polynomials in f of degree n - 1 with coefficients being small functions and rational functions respectively, R is a non-vanishing small function of f, α is a nonconstant entire function, p1, p2 are non-vanishing rational functions, and α1, α2 are nonconstant polynomials. Particularly, we consider the solutions of the second equation when p1, p2 are nonzero constants, and deg α1 = deg α2 = 1. Our results are improvements and complements of Liao ([9]), and Rong-Xu ([11]), etc., which partially answer a question proposed by Li ([7]).

A Symbiotic Evolutionary Algorithm for Balancing and Sequencing Mixed Model Assembly Lines with Multiple Objectives (다목적을 갖는 혼합모델 조립라인의 밸런싱과 투입순서를 위한 공생 진화알고리즘)

  • Kim, Yeo-Keun;Lee, Sang-Seon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.3
    • /
    • pp.25-43
    • /
    • 2010
  • We consider a multi-objective balancing and sequencing problem in mixed model assembly lines, which is important for an efficient use of the assembly lines. In this paper, we present a neighborhood symbiotic evolutionary algorithm to simultaneously solve the two problems of balancing and model sequencing under multiple objectives. We aim to find a set of well-distributed solutions close to the true Pareto optimal solutions for decision makers. The proposed algorithm has a two-leveled structure. At Level 1, two populations are operated : One consists of individuals each of which represents a partial solution to the balancing problem and the other consists of individuals for the sequencing problem. Level 2, which is an upper level, works one population whose individuals represent the combined entire solutions to the two problems. The process of Level 1 imitates a neighborhood symbiotic evolution and that of Level 2 simulates an endosymbiotic evolution together with an elitist strategy to promote the capability of solution search. The performance of the proposed algorithm is compared with those of the existing algorithms in convergence, diversity and computation time of nondominated solutions. The experimental results show that the proposed algorithm is superior to the compared algorithms in all the three performance measures.