• Title/Summary/Keyword: ensemble learning models

Search Result 199, Processing Time 0.028 seconds

A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks (Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구)

  • Kang, Boo-Sik
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.123-130
    • /
    • 2019
  • One of the most commonly used methods of web recommendation techniques is collaborative filtering. Many studies on collaborative filtering have suggested ways to improve accuracy. This study proposes a method of movie recommendation using Word2Vec and an ensemble convolutional neural networks. First, in the user, movie, and rating information, construct the user sentences and movie sentences. It inputs user sentences and movie sentences into Word2Vec to obtain user vectors and movie vectors. User vectors are entered into user convolution model and movie vectors are input to movie convolution model. The user and the movie convolution models are linked to a fully connected neural network model. Finally, the output layer of the fully connected neural network outputs forecasts of user movie ratings. Experimentation results showed that the accuracy of the technique proposed in this study accuracy of conventional collaborative filtering techniques was improved compared to those of conventional collaborative filtering technique and the technique using Word2Vec and deep neural networks proposed in a similar study.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

Using Mechanical Learning Analysis of Determinants of Housing Sales and Establishment of Forecasting Model (기계학습을 활용한 주택매도 결정요인 분석 및 예측모델 구축)

  • Kim, Eun-mi;Kim, Sang-Bong;Cho, Eun-seo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.181-200
    • /
    • 2020
  • This study used the OLS model to estimate the determinants affecting the tenure of a home and then compared the predictive power of each model with SVM, Decision Tree, Random Forest, Gradient Boosting, XGBooest and LightGBM. There is a difference from the preceding study in that the Stacking model, one of the ensemble models, can be used as a base model to establish a more predictable model to identify the volume of housing transactions in the housing market. OLS analysis showed that sales profits, housing prices, the number of household members, and the type of residential housing (detached housing, apartments) affected the period of housing ownership, and compared the predictability of the machine learning model with RMSE, the results showed that the machine learning model had higher predictability. Afterwards, the predictive power was compared by applying each machine learning after rebuilding the data with the influencing variables, and the analysis showed the best predictive power of Random Forest. In addition, the most predictable Random Forest, Decision Tree, Gradient Boosting, and XGBooost models were applied as individual models, and the Stacking model was constructed using Linear, Ridge, and Lasso models as meta models. As a result of the analysis, the RMSE value in the Ridge model was the lowest at 0.5181, thus building the highest predictive model.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

Suggestion of Selecting features and learning models for Android-based App Malware Detection (안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안)

  • Bae, Se-jin;Rhee, Jung-soo;Baik, Nam-kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.377-380
    • /
    • 2022
  • An application called an app can be downloaded and used on mobile devices. Among them, Android-based apps have the disadvantage of being implemented on an open source basis and can be exploited by anyone, but unlike iOS, which discloses only a small part of the source code, Android is implemented as an open source, so it can analyze the code. However, since anyone can participate in changing the source code of open source-based Android apps, the number of malicious codes increases and types are bound to vary. Malicious codes that increase exponentially in a short period of time are difficult for humans to detect one by one, so it is efficient to use a technique to detect malicious codes using AI. Most of the existing malicious app detection methods are to extract Features and detect malicious apps. Therefore, three ways to select the optimal feature to be used for learning after feature extraction are proposed. Finally, in the step of modeling with optimal features, ensemble techniques are used in addition to a single model. Ensemble techniques have already shown results beyond the performance of a single model, as has been shown in several studies. Therefore, this paper presents a plan to select the optimal feature and implement a learning model for Android app-based malicious code detection.

  • PDF

Indoor positioning method using WiFi signal based on XGboost (XGboost 기반의 WiFi 신호를 이용한 실내 측위 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Kim, Dae-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2022
  • Accurately measuring location is necessary to provide a variety of services. The data for indoor positioning measures the RSSI values from the WiFi device through an application of a smartphone. The measured data becomes the raw data of machine learning. The feature data is the measured RSSI value, and the label is the name of the space for the measured position. For this purpose, the machine learning technique is to study a technique that predicts the exact location only with the WiFi signal by applying an efficient technique to classification. Ensemble is a technique for obtaining more accurate predictions through various models than one model, including backing and boosting. Among them, Boosting is a technique for adjusting the weight of a model through a modeling result based on sampled data, and there are various algorithms. This study uses Xgboost among the above techniques and evaluates performance with other ensemble techniques.

Convolutional Autoencoder based Stress Detection using Soft Voting (소프트 보팅을 이용한 합성곱 오토인코더 기반 스트레스 탐지)

  • Eun Bin Choi;Soo Hyung Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.1-9
    • /
    • 2023
  • Stress is a significant issue in modern society, often triggered by external or internal factors that are difficult to manage. When high stress persists over a long term, it can develop into a chronic condition, negatively impacting health and overall well-being. However, it is challenging for individuals experiencing chronic stress to recognize their condition, making early detection and management crucial. Using biosignals measured from wearable devices to detect stress could lead to more effective management. However, there are two main problems with using biosignals: first, manually extracting features from these signals can introduce bias, and second, the performance of classification models can vary greatly depending on the subject of the experiment. This paper proposes a model that reduces bias using convo utional autoencoders, which can represent the key features of data, and enhances generalizability by employing soft voting, a method of ensemble learning, to minimize performance variability. To verify the generalization performance of the model, we evaluate it using LOSO cross-validation method. The model proposed in this paper has demonstrated superior accuracy compared to previous studies using the WESAD dataset.

  • PDF

Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data (머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로)

  • Yoon, Yanghyun;Kim, Taekyung;Kim, Suyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.229-249
    • /
    • 2022
  • This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.1-11
    • /
    • 2023
  • Breast cancer is the disease that affects women the most worldwide. Due to the development of computer technology, the efficiency of machine learning has increased, and thus plays an important role in cancer detection and diagnosis. Deep learning is a field of machine learning technology based on an artificial neural network, and its performance has been rapidly improved in recent years, and its application range is expanding. In this paper, we propose a DNN-SVM hybrid model that combines the structure of a deep neural network (DNN) based on transfer learning and a support vector machine (SVM) for breast cancer classification. The transfer learning-based proposed model is effective for small training data, has a fast learning speed, and can improve model performance by combining all the advantages of a single model, that is, DNN and SVM. To evaluate the performance of the proposed DNN-SVM Hybrid model, the performance test results with WOBC and WDBC breast cancer data provided by the UCI machine learning repository showed that the proposed model is superior to single models such as logistic regression, DNN, and SVM, and ensemble models such as random forest in various performance measures.