Acknowledgement
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2021R1I1A3A04036408)이며, 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2023-00219107).
References
- S. Gedam and S. Paul, "A Review on Mental Stress Detection Using Wearable Sensors and Machine Learning Techniques," IEEE Access, vol. 9, pp. 84045-84066, 2021. https://doi.org/10.1109/ACCESS.2021.3085502
- K. Rateb, A.S. Fares, T. Usman, B. Fabio, A.M. Fadwa, and A.N. Hasan, "A Review on Mental Stress Assessment Methods Using EEG Signals," Sensors, vol. 21, no. 15, pp. 5043, 2021.
- V. Olga, Crowley, S. Paula, McKinley, M.B. Matthew, E.S. Joseph E, D.R. Carol, W. Maxine, E.S. Teresa, and P.S. Richard, "The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge," International Journal of Psychophysiology, vol. 82, no. 3, pp. 225-232, 2011. https://doi.org/10.1016/j.ijpsycho.2011.09.002
- D.B. O'conner, F.T. Julian, and V. Kavita, "Stress and health: A review of psychobiological processes," Annual Review of Psychology, vol. 72, no. 1, pp. 663-688, 2021. https://doi.org/10.1146/annurev-psych-062520-122331
- P.A. Thoits, "Stress and health: Major findings and policy implications," Journal of health and social behavior, vol. 51, no. 1, S41-S53, 2010. https://doi.org/10.1177/0022146510383499
- A. Garg, M.M. Chren, L.P. Sands, M.S. Matsui, K.D. Marenus, K.R. Feingold, and P.M. Elias, "Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders," Archives of dermatology, vol. 137, no. 1, pp. 53-59, 2001. https://doi.org/10.1001/archderm.137.1.53
- T.C. Adam and E.S. Epel, "Stress, eating and the reward system," Physiology & Behavior, vol. 91, no. 4, pp. 449-458, 2007. https://doi.org/10.1016/j.physbeh.2007.04.011
- A. Sano and R.W. Picard, "Stress Recognition Using Wearable Sensors and Mobile Phones," 2013 Humaine Association Conference on Af ective Computing and Intelligent Interaction, pp. 671-676, Geneva, Switzerland, Dec2013.
- C. Glaros and D.I. Fotiadis, "Wearable devices in healthcare," Intelligent paradigms for healthcare enterprises, vol. 184, pp. 237-264, 2005. https://doi.org/10.1007/11311966_8
- S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thil, M. Hassan, and A. Seneviratne, "A Survey of Wearable Devices and Challenges," IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2573-2620, 2017. https://doi.org/10.1109/COMST.2017.2731979
- 김태웅, "빅데이터 기반의 가속도 신호를 이용한 집단 행동패턴 및 활동성 분석 시스템," 스마트미디어저널, 제6권, 제3호, 83-88쪽, 2017년 9월
- Escabi and A. Monty, "Biosignal processing," Introduction to biomedical engineering, Academic Press, pp. 549-625, 2005.
- G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Roniotis, and M. Tsiknakis, "Review on Psychological Stress Detection Using Biosignals," IEEE Transactions on Af ective Computing, vol. 13, no. 1, pp. 440-460, 2022. https://doi.org/10.1109/TAFFC.2019.2927337
- Arjun, A.S. Rajpoot, and M.R. Panicker, "Subject independent emotion recognition using EEG signals employing attention driven neural networks," Biomedical Signal Processing and Control, vol. 75, 2022.
- P. Bobade and M. Vani, "Stress Detection with Machine Learning and Deep Learning using Multimodal Physiological Data," 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 51-57, Coimbatore, India, 2020.
- P. Schmidt, A. Reiss, R. Duerichen, Claus. Marberger, K.V. Laerhoven, "Introducing wesad, a multimodal dataset for wearable stress and affect detection," Proceedings of the 20th ACM international conference on multimodal interaction, pp. 400-408, Boulder, Colorado, Oct2018.
- S. Samyoun, A. Sayeed Mondol and J.A. Stankovic, "Stress Detection via Sensor Translation," 2020 16th International Conference on Distributed Computing in Sensor Systems, pp. 19-26, Marina del Rey, USA, May2020.
- S. Rovinska and N. Khan, "Affective State Recognition with Convolutional Autoencoders," 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4664-4667, Glasgow, United Kingdom, Jul2022.
- N. Andrew, "Sparse autoencoder." CS294A Lecture notes, pp. 1-19, 2011.
- Bahadur, Nitish, and R. Paffenroth. "Dimension estimation using autoencoders," arXiv preprint arXiv, vol. 1909, no. 10702, 2019.
- 천성길, 이주홍, 최범기, 송재원, "대규모 외생 변수 및 Deep Neural Network 기반 금융 시장 예측 및 성능 향상," 스마트미디어저널, 제9권, 제4호, 26-35쪽, 2020년 12월
- A better autoencoder for image: Convolutional autoencoder(2018). http://users.cecs.anu.edu.au/Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58.pdf (accessed Nov., 20, 2023).
- S. Chen, J. Yu, and S. Wang, "One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes," Journal of Process Control, vol. 87, pp. 54-67, 2 020. https://doi.org/10.1016/j.jprocont.2020.01.004
- Dietterich and G. Thomas, "Ensemble methods in machine learning," International workshop on multiple classifier systems, pp. 1-15, Cagliari, Italy, Jun2000.
- Zhou and Zhi-Hua, Ensemble methods: foundations and algorithms, CRC press, pp. 15-20, 2012.
- G. Kyriakides and K.G. Margaritis, Hands-On Ensemble Learning with Python: Build highly optimized ensemble machine learning models using scikit-learn and Keras, Packt Publishing Ltd, pp. 52-69, 2019.
- J. Cao, Z. Lin, G.B. Huang, and N. Liu, "Voting based extreme learning machine,", Information Sciences, vol. 185, no. 1, pp. 66-77, 2012. https://doi.org/10.1016/j.ins.2011.09.015
- J. Cao, S. Kwong, R. Wang, X. Li, K. Li, and X. Kong, "Class-specific soft voting based multiple extreme learning machines ensemble," Neurocomputing, vol. 149, part A, pp. 275-284, 2015. https://doi.org/10.1016/j.neucom.2014.02.072
- Empatica E4, https://e4.empatica.com/e4-wristband (accessed Nov., 20, 2023).
- Liaw, Andy, and M. Wiener, "Classification and regression by randomForest," R news, vol. 2, no. 3, pp. 18-22, 2002.
- Geurts, Pierre, D. Ernst, and L. Wehenkel. "Extremely randomized trees," Machine learning, vol. 63, no. 1, pp. 3-42, 2006. https://doi.org/10.1007/s10994-006-6226-1
- 노성진, 노미진, 한무명초, 엄선현, 김양석, "머신러닝을 활용한 선발 투수 교체시기에 관한 연구," 스마트미디어저널, 제11권, 제2호, 9-17쪽, 2022년 03월