DOI QR코드

DOI QR Code

Indoor positioning method using WiFi signal based on XGboost

XGboost 기반의 WiFi 신호를 이용한 실내 측위 기법

  • Hwang, Chi-Gon (Dept. of Computer Engineering, IIT, Kwangwoon University) ;
  • Yoon, Chang-Pyo (Dept. Of Computer & Mobile Convergence, GyeongGi University of Science and Technology) ;
  • Kim, Dae-Jin (Institute for Image & Cultural Contents, Dongguk University)
  • Received : 2021.11.29
  • Accepted : 2021.12.19
  • Published : 2022.01.31

Abstract

Accurately measuring location is necessary to provide a variety of services. The data for indoor positioning measures the RSSI values from the WiFi device through an application of a smartphone. The measured data becomes the raw data of machine learning. The feature data is the measured RSSI value, and the label is the name of the space for the measured position. For this purpose, the machine learning technique is to study a technique that predicts the exact location only with the WiFi signal by applying an efficient technique to classification. Ensemble is a technique for obtaining more accurate predictions through various models than one model, including backing and boosting. Among them, Boosting is a technique for adjusting the weight of a model through a modeling result based on sampled data, and there are various algorithms. This study uses Xgboost among the above techniques and evaluates performance with other ensemble techniques.

위치를 정확하게 측정하는 것은 다양한 서비스를 제공하는 데 필요하다. 실내 측위를 위한 데이터는 스마트 폰의 앱을 통해 WiFi 장치로부터 RSSI 값을 측정한다. 이렇게 측정된 데이터는 기계학습의 원시 데이터가 된다. 특징 데이터는 측정된 RSSI 값이고, 레이블은 측정한 위치에 대한 공간의 이름으로 한다. 이를 위한 기계학습 기법은 분류에 효율적인 기법을 적용하여 WiFi 신호만으로 정확한 위치를 예측하는 기법을 연구하고자 한다. 앙상블은 하나의 모델보다 다양한 모델을 통하여 더 정확한 예측값을 구하는 기법으로, bagging과 boosting이 있다. 이 중 Boosting은 샘플링한 데이터를 바탕으로 모델링한 결과를 통해 모델의 가중치를 조정하는 기법으로, 다양한 알고리즘이 있다. 본 연구는 위 기법 중 XGboost를 이용하고, 다른 앙상블 기법과 이용한 수행결과를 바탕으로 성능을 평가한다.

Keywords

References

  1. K. Konstantinos and T. Orphanoudakis, "Bluetooth beacon based accurate indoor positioning using machine learning," in 2019 4th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference, pp. 1-6, Sep. 2019.
  2. D. J. Kim, C. G. Hwang, and C. P. Yoon, "Learning data preprocessing technique for improving indoor positioning performance based on machine learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 11, pp. 1528-1533, Nov. 2020. https://doi.org/10.6109/JKIICE.2020.24.11.1528
  3. C. G. Hwang, C. P. Yoon, and D. J. Kim, "Indoor positioning system using Xgboosting," Proceedings of the Korean Institute of Information and Commucation Sciences Conference, vol. 45, pp. 492-494, 2021
  4. S. Gonzalez, S. Garcia, J. Del Ser, L. Rokach, and F. Herrera, "A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities," Information Fusion, vol. 64, pp. 205-237, Dec. 2020. https://doi.org/10.1016/j.inffus.2020.07.007
  5. S. H. Oh and J. G. Kim, "WiFi Positioning Based on PSO in 3GPP Indoor Environments," The Journal of Korean Institute of Communications and Information Sciences, vol. 46, no. 9, pp. 1440-1448, Sep. 2021. https://doi.org/10.7840/kics.2021.46.9.1440
  6. D. B. Ninh J. He, V. T. Trung, and D. P.Huy, "An effective random statistical methodfor indoor positioning system using WiFi fingerprinting," Future Generation Comput. Syst., vol. 109, pp. 238-248, Aug. 2020. https://doi.org/10.1016/j.future.2020.03.043
  7. H. G. Shin, Y. H. Choi, and C. P. Yoon, "Movement Path Data Generation from Wi-Fi Fingerprints for Recurrent Neural Networks," Sensors, vol. 21, no. 8, pp. 2823, Apr. 2021. https://doi.org/10.3390/s21082823
  8. S. Lee, J. Kim, and N. Moon, "Random forest and WiFi fingerprint-based indoor location recognition system using smartwatch," Human-centric Computing and Information Sciences, vol. 9, no. 1, pp. 6, Feb. 2019. https://doi.org/10.1186/s13673-019-0168-7
  9. L. Breiman, "Random forests." Machine learning, vol. 45, no. 1, pp. 5-32. Oct. 2001. https://doi.org/10.1023/A:1010933404324
  10. T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 785-794. 2016.
  11. H. Mo, H. Sun, J. Liu, and S Wei, "Developing window behavior models for residential buildings using XGBoost algorithm," Energy and Buildings, vol. 205, no. 15, pp. 109564, Dec. 2019. https://doi.org/10.1016/j.enbuild.2019.109564
  12. K. K. Yun, S. W. Yoon, and D. Won, "Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering proces," Expert Systems with Applications, vol. 186, pp. 115716, Dec. 2021. https://doi.org/10.1016/j.eswa.2021.115716